×

The tensor product of exceptional representations on the general linear group. (English) Zbl 1005.20033

Let \(G(r)=\text{GL}(r,F)\) be the general linear group over a non-Archimedean local field \(F\), \(\text{char}(F)\neq 2\), and \(\widetilde G(r)\) be the metaplectic covering group of \(G(r)\). For a suitable character \(\omega\) of \(Z(\widetilde G(r))\), let \(\vartheta_{r,\omega}\) be an exceptional representation of \(\widetilde G(r)\). Let, for suitable characters \(\omega\) and \(\nu\) of \(Z(\widetilde G(r))\) and \(\pi\) a representation of \(G(r)\), \(L(\omega,\nu;\pi)\) be the space of \(G(r)\)-invariant linear functionals on \(\vartheta_{r,\omega}\otimes\vartheta_{r,\nu}\otimes\pi\).
One purpose of the article is to specify the structure of the space \(L(\omega,\nu;\pi)\) for certain classes of \(\pi\) (Section 6). A character \(\omega\) of \(Z(\widetilde G(r))\) is called suitable if it is compatible (see p. 755) with the trivial character \(\chi_0\). For an ordered partition of \(r\), \(\gamma=(\gamma_1,\dots,\gamma_r)\), and compatible characters \(\chi\) and \(\omega\) of \(Z(\widetilde G(r))\), the representation \(\vartheta_\gamma(\chi,\omega)\) is defined in p. 756 ((5.2)), and \(\vartheta_{r,\omega}=\vartheta_{(r)}(\chi_0,\omega)\) for \(\omega\) compatible with \(\chi_0\). A representation \(\pi\) of \(G(r)\) is called homogeneous if it has a unique character \(\omega\) of \(Z(G(r))\) such that there is a non-zero subquotient of \(\pi\) in which \(Z(G(r))\) acts via \(\omega\).
(1) The first main result concerns \(\pi\): homogeneous admissible representation of finite length which is general with respect to the complex numbers (Th. 6.1), and as its corollary, it is shown that for \(\pi\) a homogeneous admissible representation of finite length which is general with respect to \(1/4\), \(\dim_\mathbb{C} L(\omega,\nu;\pi)\) is at most the dimension of the space of Whittaker functionals on \(\pi\). (2) Let \(\gamma_0=(1,1,\dots,1)\) and \(G(\gamma_0)=\text{GL}(1)\times\text{GL}(1)\times\cdots\times\text{GL}(1)\), \(\chi=(\chi_1,\dots,\chi_r)\) be the character of \(g(\gamma_0)\) and \(I(\chi)\) be the principal series representation of \(G(r)\) obtained by normalized parabolic induction from \(\chi\). Defining balanced characters of \(G(\gamma_0)\) (Def. 6.2), it is shown that for \(\chi\) non-balanced, \(L(\omega,\nu;I(\chi))=\{0\}\) (Th. 6.3). (3) If \(\pi\) is an irreducible admissible representation of \(G(2)\), \(\dim_\mathbb{C}(\omega,\omega;\pi)\leq 1\), and if \(\pi\) is an irreducible admissible representation of \(G(3)\), \(\dim_\mathbb{C} L(\omega,\nu;\pi)\leq 1\) (Th. 6.5). (4) Finally, when \(\chi\) is balanced and \(\chi^2\) is regular, \(\dim_\mathbb{C} L(\omega,\nu;\pi)\leq 1\) (Th. 6.4).

MSC:

20G05 Representation theory for linear algebraic groups
20G25 Linear algebraic groups over local fields and their integers
11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] Banks W.D. , Levy J. , Sepanski M.R. , Block-compatible metaplectic cocycles , J. Reine Angew. Math. 507 ( 1999 ) 131 - 163 . MR 1670203 | Zbl 0914.20039 · Zbl 0914.20039 · doi:10.1515/crll.1999.507.131
[2] Bernstein J.N. , Zelevinsky A.V. , Representations of the group GL(n,F) where F is a nonarchimedean local field , Usp. Mat. Nauk. 31 ( 1976 ) 5 - 70 . MR 425030 | Zbl 0342.43017 · Zbl 0342.43017
[3] Bernstein J.N. , Zelevinsky A.V. , Induced representations of reductive p-adic groups I , Ann. Scient. École Norm. Sup. 10 ( 1977 ) 441 - 472 . Numdam | MR 579172 | Zbl 0412.22015 · Zbl 0412.22015
[4] Borel A. , Linear Algebraic Groups , Graduate Texts in Math. , 126 , Springer-Verlag , New York , 1991 . MR 1102012 | Zbl 0726.20030 · Zbl 0726.20030
[5] Bump D. , Ginzburg D. , Symmetric square L -functions on GL(r) , Ann. of Math. 136 ( 1992 ) 137 - 205 . MR 1173928 | Zbl 0753.11021 · Zbl 0753.11021 · doi:10.2307/2946548
[6] Flicker Y.Z. , Kazhdan D.A. , Metaplectic correspondence , Publ. Math. Inst. Hautes Études Sci. 64 ( 1989 ) 53 - 110 . Numdam | MR 876160 | Zbl 0616.10024 · Zbl 0616.10024 · doi:10.1007/BF02699192
[7] Flicker Y.Z. , Kazhdan D.A. , Savin G. , Explicit realization of a metaplectic representation , J. d’Anal. Math. 55 ( 1990 ) 17 - 39 . MR 1094709 | Zbl 0727.11021 · Zbl 0727.11021 · doi:10.1007/BF02789195
[8] Gelbart S. , Piatetski-Shapiro I.I. , Distinguished representations and modular forms of half-integral weight , Invent. Math. 59 ( 1980 ) 145 - 188 . MR 577359 | Zbl 0426.10027 · Zbl 0426.10027 · doi:10.1007/BF01390042
[9] Gelfand I.M. , Kazhdan D.A. , Representations of GL( n , K ) , in: Lie Groups and Their Representations 2 , Akadèmiai Kiado , Budapest , 1974 .
[10] Huang J.-S. , The unitary dual of the universal covering group of GL(n,R) , Duke Math. J. 61 ( 1990 ) 705 - 745 . Article | MR 1084456 | Zbl 0732.22010 · Zbl 0732.22010 · doi:10.1215/S0012-7094-90-06126-5
[11] Kable A.C. , The main involutions of the metaplectic group , Proc. Amer. Math. Soc. 127 ( 1999 ) 955 - 962 . MR 1610921 | Zbl 0912.19001 · Zbl 0912.19001 · doi:10.1090/S0002-9939-99-04923-0
[12] Kazhdan D.A. , Patterson S.J. , Metaplectic forms , Publ. Math. Inst. Hautes Études Sci. 59 ( 1984 ) 35 - 142 . Numdam | MR 743816 | Zbl 0559.10026 · Zbl 0559.10026 · doi:10.1007/BF02698770
[13] Matsumoto H. , Sur les sous-groupes arithmétiques des groupes semi-simples déployés , Ann. Scient. École Norm. Sup. 2 ( 1969 ) 1 - 62 . Numdam | MR 240214 | Zbl 0261.20025 · Zbl 0261.20025
[14] Prasad D. , Some applications of seesaw duality to branching laws , Math. Ann. 304 ( 1996 ) 1 - 20 . MR 1367880 | Zbl 0838.22005 · Zbl 0838.22005 · doi:10.1007/BF01446282
[15] Savin G. , On the tensor product of theta representations of GL(3) , Pacific J. Math. 154 ( 1992 ) 369 - 380 . Article | MR 1159517 | Zbl 0724.22018 · Zbl 0724.22018 · doi:10.2140/pjm.1992.154.369
[16] Weil A. , Sur certains groupes d’opérateurs unitaires , Acta Math. 111 ( 1964 ) 143 - 211 . MR 165033 | Zbl 0203.03305 · Zbl 0203.03305 · doi:10.1007/BF02391012
[17] Weil A. , Basic Number Theory , Grund. Math. Wiss. , 144 , Springer-Verlag , New York , 1974 . MR 427267 | Zbl 0326.12001 · Zbl 0326.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.