×

A Benders decomposition approach for the locomotive and car assignment problem. (English) Zbl 1004.90045

Summary: One of the many problems faced by rail transportation companies is to optimize the utilization of the available stock of locomotives and cars. In this paper, we deseribe a decomposition method for the simultaneous assignment of locomotives and cars in the context of passenger transportation. Given a list of train legs and a fleet composed of several types of equipment, the problem is to determine a set of minimum cost equipment cycles such that euery leg is covered using appropriate equipment. Linking constraints, which appear when both locomotives and cars are treated simultaneously, lead to a large integer programming formulation. We propose an exact algorithm, based on the Benders decomposition approach, that exploits the separability of the problem. Computational experiments carried on a number of real-life instances indicate that the method finds optimal solutions within short computing times. It also outperforms other approaches based on Lagrangian relaxation or Dantzig-Wolfe decomposition, as well as a simplex-based branch-and-bound method.

MSC:

90B80 Discrete location and assignment
90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut
90B06 Transportation, logistics and supply chain management
49M27 Decomposition methods
Full Text: DOI