×

Determining the dimensionality of multidimensional scaling representations for cognitive modeling. (English) Zbl 1003.91033

Author’s summary: Multidimensional scaling models of stimulus domains are widely used as a representational basis for cognitive modeling. These representations associate stimuli with points in a coordinate space that has some predetermined number of dimensions. Although the choice of dimensionality can significantly influence cognitive modeling, it is often made on the basis of unsatisfactory heuristics. To address this problem, a Bayesian approach to dimensionality determination, based on the Bayesian Information Criterion (BIC), is developed using a probabilistic formulation of multidimensional scaling. The BIC approach formalizes the trade-off between data-fit and model complexity implicit in the problem of dimensionality determination and allows for the explicit introduction of information regarding data precision. Monte Carlo simulations are presented that indicate, by using this approach, the determined dimensionality is likely to be accurate if either a significant number of stimuli are considered or a reasonable estimate of precision is available. The approach is demonstrated using an established data set involving the judged pairwise similarities between a set of geometric stimuli.

MSC:

91C15 One- and multidimensional scaling in the social and behavioral sciences
91E10 Cognitive psychology
Full Text: DOI

References:

[1] Akaike, H., A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19, 716-723 (1974) · Zbl 0314.62039
[2] Arabie, P., Was Euclid an unnecessarily sophisticated psychologist?, Psychometrika, 56, 567-587 (1991) · Zbl 0761.92050
[3] Ashby, F. G.; Maddox, W. T.; Lee, W. W., On the dangers of averaging across subjects when using multidimensional scaling or the similarity-choice model, Psychological Science, 5, 144-151 (1994)
[4] Ashby, F. G.; Perrin, N. A., Toward a unified theory of similarity and recognition, Psychological Review, 95, 124-150 (1988)
[5] Borg, I, and, Lingoes, J. 1987, Multidimensional similarity structure analysis, New York, Springer-Verlag.; Borg, I, and, Lingoes, J. 1987, Multidimensional similarity structure analysis, New York, Springer-Verlag. · Zbl 0436.62095
[6] Cohen, J. D., Drawing graphs to convey proximity: An incremental arrangement method, ACM Transactions on Computer-Human Interaction, 4, 197-229 (1997)
[7] Cox, T. F.; Cox, M. A.A., Multidimensional scaling on a sphere, Communications in Statistics: Theory and Methods, 20, 2943-2953 (1991)
[8] Cox, T. F.; Cox, M. A.A., Multidimensional scaling (1994), Chapman and Hall: Chapman and Hall London · Zbl 0853.62047
[9] Davison, M. L., Multidimensional scaling (1983), Wiley: Wiley New York · Zbl 0554.62054
[10] Demartines, P.; Hérault, J., Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets, IEEE Transactions on Neural Networks, 8, 148-154 (1997)
[11] Ekman, G., Dimensions of color vision, The Journal of Psychology, 38, 467-474 (1954)
[12] Ennis, D. M., Confusable and discriminable stimuli: Comment on Nosofsky (1986) and Shepard (1986), Journal of Experimental Psychology: General, 117, 408-411 (1988)
[13] Ennis, D. M., Toward a universal law of generalization, Science, 242, 944 (1988)
[14] Ennis, D. M., Modeling similarity and identification when there are momentary fluctuations in psychological magnitudes, (Ashby, F. G., Multidimensional models of perception and cognition (1992), Erlbaum: Erlbaum Hillsdale), 279-298
[15] Garner, W. R., The processing of information and structure (1974), Erlbaum: Erlbaum Potomac
[16] Gati, I.; Tversky, A., Representations of qualitative and quantitative dimensions, Journal of Experimental Psychology: Human Perception and Performance, 8, 325-340 (1982)
[17] Getty, D. J.; Swets, J. A.; Swets, J. B.; Green, D. M., On the prediction of confusion matrices from similarity judgements, Perception & Psychophysics, 26, 1-19 (1979)
[18] Grau, J. W.; Nelson, D. K., The distinction between integral and separable dimensions: Evidence for the integrality of pitch and loudness, Journal of Experimental Psychology: General, 117, 347-370 (1988)
[19] Gregson, R. A.M., A comparative evaluation of seven similarity models, British Journal of Mathematical and Statistical Psychology, 29, 139-156 (1976) · Zbl 0345.92013
[20] Hubert, L.; Arabie, P.; Hesson-Mcinnis, M., Multidimensional scaling in the city-block metric: A combinatorial approach, Journal of Classification, 9, 211-236 (1992)
[21] Johnson, E. J.; Tversky, A., Representations of perceptions of risks, Journal of Experimental Psychology: General, 113, 55-70 (1984)
[22] Kashyap, R. L., Inconsistency of the AIC rule for estimating the order of autoregressive models, IEEE Transactions on Automatic Control, 25, 996-998 (1980) · Zbl 0441.93032
[23] Kass, R. E.; Raftery, A. E., Bayes factors, Journal of the American Statistical Association, 90, 773-795 (1995) · Zbl 0846.62028
[24] Klock, H. J.; Buhmann, J., Multidimensional scaling by deterministic annealing, Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Venice (1997)
[25] Kruschke, J. K., ALCOVE: An exemplar-based connectionist model of category learning, Psychological Review, 99, 22-44 (1992)
[26] Kruschke, J. K., Human category learning: Implications for backpropagation models, Connection Science, 5, 3-36 (1993)
[27] Kruskal, J. B., Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, 29, 1-27 (1964) · Zbl 0123.36803
[28] Lee, M. D., The connectionist construction of psychological spaces, Connection Science, 9, 323-351 (1997)
[29] Lindman, H.; Caelli, T., Constant curvature Riemannian scaling, Journal of Mathematical Psychology, 17, 89-109 (1978) · Zbl 0391.92020
[30] Lowe, D.; Tipping, M. E., Feed-forward neural networks and topographic mappings for exploratory data analysis, Neural Computing and Applications, 4, 83-95 (1996)
[31] Luetkepohl, U., Comparison of criteria for estimating the order of a vector autoregressive process, Journal of Time Series Analysis, 6, 35-52 (1985)
[32] Maddox, W.; Ashby, F., Selective attention and the formation of linear decision boundaries: Comment on McKinley and Nosofsky (1996), Journal of Experimental Psychology, 24, 301-321 (1998)
[33] Mao, J.; Jain, A. K., Artificial neural networks for feature extraction and multivariate data projection, IEEE Transactions on Neural Networks, 6, 296-317 (1995)
[34] Myung, I. J.; Pitt, M. A., Applying Occam’s razor in modeling cognition: A Bayesian approach, Psychonomic Bulletin & Review, 4, 79-95 (1997)
[35] Myung, I. J.; Shepard, R. N., Maximum entropy inference and stimulus generalization, Journal of Mathematical Psychology, 40, 342-347 (1996) · Zbl 0883.92041
[36] Nosofsky, R. M., Choice, similarity, and the context theory of classification, Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 104-114 (1984)
[37] Nosofsky, R. M., Attention, similarity, and the identification-categorization relationship, Journal of Experimental Psychology: General, 115, 39-57 (1986)
[38] Nosofsky, R. M., On exemplar-based representations: Reply to Ennis (1988), Journal of Experimental Psychology: General, 117, 412-414 (1988)
[39] Nosofsky, R. M., Similarity scaling and cognitive process models, Annual Review of Psychology, 43, 25-53 (1992)
[40] Potts, B.; Melara, R. D.; Marks, L., Circle size and diameter tilt: A new look at integrality and separability, Perception & Psychophysics, 60, 101-112 (1998)
[41] Ramsay, J. O., Maximum likelihood estimation in multidimensional scaling, Psychometrika, 42, 241-266 (1977) · Zbl 0362.92019
[42] Ramsay, J. O., Confidence regions for multidimensional scaling analysis, Psychometrika, 43, 145-160 (1978) · Zbl 0384.62045
[43] Ramsay, J. O., Some small sample results for maximum likelihood estimation in multidimensional scaling, Psychometrika, 45, 139-144 (1980) · Zbl 0422.62098
[44] Ramsay, J. O., Some statistical approaches to multidimensional scaling data, Journal of the Royal Statistical Society: Series A, 145, 285-312 (1982) · Zbl 0487.62003
[45] Rodgers, J. L., Matrix and stimulus sample sizes in the weighted MDS model: Empirical metric recovery functions, Applied Psychological Measurement, 15, 71-77 (1991)
[46] Schiffman, S. S.; Reynolds, M. L.; Young, F. W., Introduction to multidimensional scaling (1981), Academic Press: Academic Press New York · Zbl 0539.65027
[47] Schwarz, G., Estimating the dimension of a model, The Annals of Statistics, 6, 461-464 (1978) · Zbl 0379.62005
[48] Shepard, R. N., Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space, Psychometrika, 22, 325-345 (1957) · Zbl 0088.12906
[49] Shepard, R. N., The analysis of proximities: Multidimensional scaling with an unknown distance function. I, Psychometrika, 27, 125-140 (1962) · Zbl 0129.12103
[50] Shepard, R. N., Representation of structure in similarity data: Problems and prospects, Psychometrika, 39, 373-422 (1974) · Zbl 0295.92024
[51] Shepard, R. N., Toward a universal law of generalization for psychological science, Science, 237, 1317-1323 (1987) · Zbl 1226.91051
[52] Shepard, R. N., Time and distance in generalization and discrimination: Reply to Ennis (1988), Journal of Experimental Psychology: General, 117, 415-416 (1988)
[53] Shepard, R. N., Integrality versus separability of stimulus dimensions: From an early convergence of evidence to a proposed theoretical basis, (Pomerantz, J. R.; Lockhead, G. L., The perception of structure: Essays in honor of Wendell R Garner (1991), American Psychological Association: American Psychological Association Washington), 53-71
[54] Shepard, R. N., Perceptual-cognitive universals as reflections of the world, Psychonomic Bulletin & Review, 1, 2-28 (1994)
[55] Shepard, R. N.; Arabie, P., Additive clustering representations of similarities as combinations of discrete overlapping properties, Psychological Review, 86, 87-123 (1979)
[56] Sibson, R., Studies in the robustness of multidimensional scaling: Procrustes statistics, Journal of the Royal Statistical Society, Series B, 40, 234-238 (1978) · Zbl 0389.62086
[57] Takane, Y., A maximum likelihood method for nonmetric multidimensional scaling: I. The case in which all empirical pairwise orderings are independent-Theory, Japanese Psychological Research, 20, 7-17 (1978)
[58] Takane, Y., A maximum likelihood method for nonmetric multidimensional scaling: I. The case in which all empirical pairwise orderings are independent-Evaluations, Japanese Psychological Research, 20, 105-114 (1978)
[59] Tenenbaum, J. B., Learning the structure of similarity, (Touretzky, D. S.; Mozer, M. C.; Hasselmo, M. E., Advances in neural information processing systems (1996), MIT Press: MIT Press Cambridge), 3-9
[60] Zinnes, J. L.; MacKay, D. B., A probabilistic multidimensional scaling approach: Properties and procedures, (Ashby, F. G., Multidimensional Models of Perception and Cognition (1992), Erlbaum: Erlbaum Hillsdale), 35-88
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.