×

Implicit resolvent dynamical systems for quasi variational inclusions. (English) Zbl 1002.49010

Summary: We suggest and analyze a class of implicit resolvent dynamical systems for quasi-variational inclusions by using the resolvent operator technique. We show that the trajectory of the solution of the implicit dynamical system converges globally exponentially to the unique solution of the quasi-variational inclusions. Our results can be considered as a significant extension of the previously known results.

MSC:

49J40 Variational inequalities
47J20 Variational and other types of inequalities involving nonlinear operators (general)
Full Text: DOI

References:

[1] Noor, M. A.; Noor, K. I., Sensitivity analysis of quasi variational inclusions, J. Math. Anal. Appl., 236, 290-299 (1999) · Zbl 0949.49007
[2] Ding, X. P., Perturbed proximal point algorithms for generalized quasi variational inclusions, J. Math. Anal. Appl., 210, 88-101 (1997) · Zbl 0902.49010
[3] Noor, M. A., Resolvent equations technique for general variational inclusions, Nonlinear Anal. Forum., 6, 171-184 (2001) · Zbl 1007.49004
[4] Noor, M. A., Set-valued mixed quasi variational inequalities and implicit resolvent equations, Math. Comput. Modelling, 29, 1-11 (1999) · Zbl 0994.47063
[5] Noor, M. A., Iterative schemes for multivalued quasi variational inequalities, J. Global Optim., 19, 141-150 (2001) · Zbl 0982.49012
[6] Noor, M. A., Generalized set-valued variational inclusions and resolvent equations, J. Math. Anal. Appl., 228, 206-220 (1998) · Zbl 1031.49016
[7] Noor, M. A., Some recent advances in variational inequalities, Part I, Basic concepts, New Zealand J. Math., 26, 53-80 (1997) · Zbl 0886.49004
[8] Noor, M. A., Some recent advances in variational inequalities, Part II, Other concepts, New Zealand J. Math., 26, 229-255 (1997) · Zbl 0889.49006
[9] Noor, M. A., Generalized multivalued quasi variational inequalities (II), Comput. Math. Appl., 35, 63-78 (1998) · Zbl 0903.49010
[10] Noor, M. A., Set-valued quasi variational inclusions, Korean J. Comput. Appl. Math., 7, 101-113 (2000) · Zbl 0946.49006
[11] Noor, M. A., Multivalued quasi variational inclusions and implicit resolvent equations, Nonlinear Anal. (2001) · Zbl 1007.49004
[12] Noor, M. A., Three-step iterative algorithms for multivalued quasi variational inclusions, J. Math. Anal. Appl., 255, 589-604 (2001) · Zbl 0986.49006
[13] Uko, L. U., Strongly nonlinear generalized equations, J. Math. Anal. Appl., 220, 65-76 (1998) · Zbl 0918.49007
[14] Dupuis, P.; Nagurney, A., Dynamical systems and variational inequalities with applications, Ann. Oper. Res., 44, 19-42 (1993) · Zbl 0785.93044
[15] Dong, J.; Zhang, D.; Nagurney, A., A projected dynamical systems model of general financial equilibrium with stability analysis, Math. Comput. Appl., 24, 35-44 (1996) · Zbl 0858.90020
[16] Friesz, T. L.; Bernstein, D. H.; Stough, R., Dynamic systems, variational inequalities and control theoretic models for predicting time-varying urban network flows, Trans. Sci., 30, 14-31 (1996) · Zbl 0849.90061
[17] Nagurney, A.; Zhang, D., Projected Dynamical Systems and Variational Inequalities with Applications (1995), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0865.90018
[18] Xia, Y. S.; Wang, J., A recurrent neural network for solving linear projection equations, Neural Network, 13, 337-350 (2000)
[19] Xia, Y. S.; Wang, J., On the stability of globally projected dynamical systems, J. Optim. Theory Appl., 106, 129-150 (2000) · Zbl 0971.37013
[20] Zhang, D.; Nagurney, A., On the stability of globally projected dynamical systems, J. Optim. Theory Appl., 85, 97-124 (1995) · Zbl 0837.93063
[21] Noor, M. A., Resolvent dynamical systems for mixed variational inequalities, Korean J. Math. Appl., 9, 15-26 (2002) · Zbl 1002.49011
[22] M.A. Noor, A Wiener-Hopf dynamical system for variational inequalities, New Zealand J. Math., to appear; M.A. Noor, A Wiener-Hopf dynamical system for variational inequalities, New Zealand J. Math., to appear · Zbl 1047.49011
[23] Noor, M. A., Implicit dynamical systems and quasi variational inequalities, Appl. Math. Comput. (2002)
[24] Demyanov, V. F.; Stavroulakis, G. E.; Polyakova, L. N.; Panagiotopoulos, P. D., Quasidifferentiability and Nonsmooth Modeling in Mechanics, Engineering and Economics (1996), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 1076.49500
[25] Noor, M. A.; Noor, K. I.; Rassias, Th. M., Set-valued resolvent equations and mixed variational inequalities, J. Math. Anal. Appl., 220, 741-759 (1998) · Zbl 1021.49002
[26] Noor, M. A.; Noor, K. I.; Rassias, Th. M., Some aspects of variational inequalities, J. Comput. Appl. Math., 47, 285-312 (1993) · Zbl 0788.65074
[27] Patriksson, M., Nonlinear Programming and Variational Inequalities: A Unified Approach (1998), Kluwer Academic: Kluwer Academic Dordrecht
[28] Brezis, H., Opérateur Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert (1973), North-Holland: North-Holland Amsterdam · Zbl 0252.47055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.