×

Singular arcs in the optimal evasion against a proportional navigation vehicle. (English) Zbl 1001.49039

Summary: The two-dimensional optimal evasion problem against a proportional navigation pursuer is analyzed using a nonlinear model. The velocities of both players have constant modulus, but change in direction. The problem is to determine the time-minimum trajectory (disengagement) or time-maximum trajectory (evasion) of the evader while moving from the assigned initial conditions to the final conditions. A maximum principle procedure allows one to reduce the optimal control problem to the phase portrait analysis of a system of two differential equations. The qualitative features of the optimal process are determined.

MSC:

49N90 Applications of optimal control and differential games
Full Text: DOI

References:

[1] LOCKE, A. S., Principles of Guided Missile Design: Guidance, D. Van Nostrand Company, Princeton, New Jersey, 1955.
[2] BRYSON, A. E., and HO, Y. C., Applied Optimal Control, Blaisdell Publishing Company, Waltham, Massachusetts, 1969.
[3] SLATER, G. L., and WELLS, W. R., Optimal Evasive Tactics against a Proportional Navigation Missile with Time Delay, Journal of Spacecraft and Rockets, Vol. 10, pp. 309-313, 1973. · doi:10.2514/3.27759
[4] SHINAR, J., ROTSZTEIN, Y., and BEZNER, E., Analysis of Three-Dimensional Optimal Evasion with Linearized Kinematics, Journal of Guidance and Control, Vol. 2, pp. 353-360, 1979. · Zbl 0424.49008 · doi:10.2514/3.55889
[5] GUTMAN, S., and LEITMANN, G., Optimal Strategies in the Neighborhood of a Collision Course, AIAA Journal, Vol. 14, pp. 1210-1212, 1976. · Zbl 0366.90139 · doi:10.2514/3.7213
[6] GUELMAN, M., and SHINAR, J., Optimal Guidance Law in the Plane, Journal of Guidance, Control, and Dynamics, Vol. 7, pp. 471-476, 1984. · Zbl 0632.93036 · doi:10.2514/3.19880
[7] COCKAINE, F., Plane Pursuit with Curvative Constraints, SIAM Journal on Applied Mathematics, Vol. 15, pp. 1511-1516, 1967. · Zbl 0158.38902 · doi:10.1137/0115133
[8] SHINAR, J., State-Dependent Optimality of a Singular Subarc. Automatica, Vol. 24, pp. 195-201, 1988. · Zbl 0638.49009 · doi:10.1016/0005-1098(88)90028-3
[9] SILBERMAN, G., and SHINAR, J., On Capture Zone of Coasting Missiles Guided by Proportional Navigation, Proceedings of the 30th Annual Israel Conference on Aviation and Astronautics, pp. 238-249, 1989.
[10] SHINAR, J., and TABAK, R., New Results in Optimal Missile Avoidance Analysis. Journal of Guidance, Control, and Dynamics, Vol. 17, pp. 897-902, 1994. · doi:10.2514/3.21287
[11] PONTRYAGIN, L. S., et al., The Mathematical Theory of Optimal Processes, Wiley-Interscience, New York, NY, 1962.
[12] AFANASIEV, V. N., KOLMANOVSKII, V. B., and NOSOV, V. R., Mathematical Theory of Control System Design, Kluwer Academic Publishers, Dordrecht, Holland, 1997.
[13] KELLEY, H. J., KOPP, R. E., and MOYER, H. G., Singular Extremals, Topics in Optimization, Edited by G. Leitmann, Academic Press, New York, NY, pp. 63-101, 1967.
[14] KELLEY, H. J., A Transformation Approach to Singular Subarcs in Optimal Trajectory and Control Problems, SIAM Journal of Control, Vol. 2, pp. 234-240, 1964. · Zbl 0163.33101
[15] BENDIXSON, I., Sur les Courbes Définies par des Équations Différentielles, Acta Mathematica, Vol. 24, pp. 1-88, 1901. · JFM 31.0328.03 · doi:10.1007/BF02403068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.