×

Bounding surface plasticity model with extended Masing behavior. (English) Zbl 0999.74031

The author formulates a deviatoric bounding surface plasticity model that preserves Masing’s rule, and an algorithm that allows for the lack, or for the existence, of an elastic range. The material-specific parameters can be obtained directly from tests. A mapping converts monotonic isotropic hardening functions into anisotropic ones that depend on the previous loading history. The cyclic behavior resembles that of the nested yield surface models, the cycles are stabilized from the first loop. The unloading curve preserves a fixed homological ratio of two, with the initial monotonic one and the process reloads through previous hardening functions when the corresponding stress-strain curves are intersected.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74S05 Finite element methods applied to problems in solid mechanics

Software:

ANSYS
Full Text: DOI

References:

[1] Lubliner, J., Plasticity Theory (1990), Macmillan: Macmillan New York · Zbl 0745.73006
[2] Owen, D. R.J.; Hinton, E., Finite Elements in Plasticity: Theory and Practice (1980), Pineridge: Pineridge Swansea · Zbl 0482.73051
[3] Swanson Analysis Systems, ANSYS User’s Manual for Revision 5.0, Volume IV, Theory, SASI, Houston, 1992; Swanson Analysis Systems, ANSYS User’s Manual for Revision 5.0, Volume IV, Theory, SASI, Houston, 1992
[4] Mróz, Z., On the description of anisotropic work hardening, J. Mech. Phys. Solids, 15, 163-175 (1967)
[5] G. Masing, Eigenspannungen und Verfertigung beim Messing, Proceedings of the Second ICAM, Zurich, 1926; G. Masing, Eigenspannungen und Verfertigung beim Messing, Proceedings of the Second ICAM, Zurich, 1926
[6] Lemaitre, J.; Chaboche, J.-L., Mechanics of Solid Materials (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0743.73002
[7] Kramer, S. L., Geotechnical Earthquake Engineering (1996), Prentice-Hall: Prentice-Hall NJ
[8] Mróz, Z.; Norris, V. A.; Zienkiewicz, O. C., Application of an anisotropic hardening model in the analysis of elastoplastic deformation of soils, Geotéchnique, 29, 1-34 (1979)
[9] Prevost, J. H., Mathematical modelling of monotonic and cyclic undrained clay behavior, Int. J. Num. Anal. Meth. Geomech., 1, 493-496 (1977)
[10] Khan, A. S.; Huang, S., Continuum Theory of Plasticity (1995), Wiley: Wiley New York · Zbl 0856.73002
[11] Borja, R. I.; Amies, A. P., Multiaxial cyclic plasticity model for clays, J. Geotech. Engrg., 120, 1051-1070 (1994)
[12] J. H. Atkinson, S. E. Stallebrass, A Model for Recent Stress-History and Non-Linearity in the Stress-Strain Behavior of Overconsolidated Soil, Proceedings of the 7th IACMAG, Cairns, 1991, pp. 555-60; J. H. Atkinson, S. E. Stallebrass, A Model for Recent Stress-History and Non-Linearity in the Stress-Strain Behavior of Overconsolidated Soil, Proceedings of the 7th IACMAG, Cairns, 1991, pp. 555-60
[13] Lee, S. R., Seboong Oh, an anisotropic hardening constitutive model based on generalized isotropic hardening rule for modelling clay behavior, Int. J. Num. Anal. Meth. Geomech., 19, 683-703 (1995) · Zbl 0834.73059
[14] Dafalias, Y. F.; Popov, E. P., Cyclic loading for materials with a vanishing elastic region, Nucl. Engrg. Des., 41, 293-302 (1977)
[15] Simo, J. C.; Taylor, R. L., Consistent tangent operators for rate independent elasto-plasticity, Comp. Meth. Appl. Mech. Engrg., 48, 101-118 (1985) · Zbl 0535.73025
[16] Borja, R. I.; Wu, W.-H., Vibration of foundations on incompressible soils with no elastic region, J. Geotech. Engrg., 120, 1570-1592 (1994)
[17] R.I. Borja, H.-Y. Chao, F.-J. Montáns, C.-H. Lin, Non-linear ground response at lotung LSST site, J. Geotech. Engrg, in press; R.I. Borja, H.-Y. Chao, F.-J. Montáns, C.-H. Lin, Non-linear ground response at lotung LSST site, J. Geotech. Engrg, in press
[18] F.-J. Montáns, R.I. Borja, Modelo de Plasticidad Multiaxial para Arcillas Sometidas a Carga Dinámica, Rev. Int. Métodos Num. Cálculo Dis. Ing., in press; F.-J. Montáns, R.I. Borja, Modelo de Plasticidad Multiaxial para Arcillas Sometidas a Carga Dinámica, Rev. Int. Métodos Num. Cálculo Dis. Ing., in press
[19] Luenberger, D. G., Linear and Non-Linear Programming (1984), Addison-Wesley: Addison-Wesley Massachusetts · Zbl 0184.44502
[20] Brent, R. P., An Algorithm with Guaranteed Convergence for Finding a Zero of a Function, The Computer J., 14, 422-425 (1971) · Zbl 0231.65046
[21] Seed, H. B.; Idriss, I. M., Soil moduli and damping factors for dynamic response analyses, rep. EERC 70-10, Earthquake Enrg. Res. Ctr. (1970), Uiversity of California: Uiversity of California Berkeley
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.