×

Quadrature formulae connected to sigma-orthogonal polynomials. (English) Zbl 0997.65045

Summary: Let \(d\lambda(t)\) be a given nonnegative measure on the real line \(\mathbb{R}\), with compact or infinite support, for which all moments \(\mu_t= \int_{\mathbb{R}} f(t) d\lambda(t)\), \(k= 0,1,\dots\), exist and are finite, and \(\mu_0> 0\). Quadrature formulas of Chakalov-Popoviciu type [cf. L. Chakalov, Colloq. Math. 5, 69-73 (1958; Zbl 0081.05801); T. Popoviciu, Acad. Republ. Popul. Romîne, Fil. Iasi, Studii Cerc. Sti., Ser. I 6, No. 1/2, 29-57 (1955; Zbl 0068.05003)] with multiple nodes \[ \int_{\mathbb{R}} f(t) d\lambda(t)= \sum^n_{\nu=1} \sum^{2s_\nu}_{i=0} A_{i,\nu}(\tau_\nu)+ R(f), \] where \(\sigma= \sigma_n= (s_1,s_2,\dots, s_n)\) is a given sequence of nonnegative integers, are considered. Such a quadrature formula has maximum degree of exactness \(d_{\max}= 2\sum^n_{\nu=1} s_\nu+ 2n-1\) if and only if \[ \int_{\mathbb{R}} \prod^n_{\nu=1} (t- \tau)^{2s_\nu+ 1} t^kd\lambda(t)= 0,\quad k= 0,1,\dots, n-1. \] The proof of the uniqueness of the extremal nodes \(\tau_1,\tau_2,\dots, \tau_n\) was given first by A. Ghizzetti and A. Ossicini [Rend. Mat., VI. Ser. 8, 1-15 (1975; Zbl 0303.65021)]. Here, an alternative simple proof of the existence and the uniqueness of such quadrature formulas is presented. In a study of the error term \(R(f)\), an influence function is introduced, its relevant properties are investigated, and in certain classes of functions the error estimate is given. A numerically stable iterative procedure, with quadrature convergence, for determining the nodes \(\tau_\nu\), \(\nu= 1,2,\dots, n\), which are the zeros of the corresponding \(\sigma\)-orthogonal polynomial, is presented. Finally, in order to show a numerical efficiency of the proposed procedure, a few numerical examples are included.

MSC:

65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
Full Text: DOI

References:

[1] Braess, D., Nonlinear Approximation Theory (1986), Springer: Springer Berlin · Zbl 0656.41001
[2] L. Chakalov, General quadrature formulae of Gaussian type, Bulgar. Akad. Nauk Izv. Mat. Inst. 1 (1954) 67-84 (Bulgarian) (English transl. East J. Approx. 1 (1995) 261-276).; L. Chakalov, General quadrature formulae of Gaussian type, Bulgar. Akad. Nauk Izv. Mat. Inst. 1 (1954) 67-84 (Bulgarian) (English transl. East J. Approx. 1 (1995) 261-276). · Zbl 0852.41023
[3] Chakalov, L., Formules générales de quadrature mécanique du type de Gauss, Colloq. Math., 5, 69-73 (1957) · Zbl 0081.05801
[4] Engels, H., Numerical Quadrature and Cubature (1980), Academic Press: Academic Press London · Zbl 0435.65013
[5] Gautschi, W., A survey of Gauss-Christoffel quadrature formulae, (Butzer, P. L.; Fehér, F., E.B. Christoffel (1981), Birkhäuser: Birkhäuser Basel), 72-147 · Zbl 0479.65001
[6] Gautschi, W., Orthogonal polynomials: applications and computation, Acta Numerica, 45-119 (1996) · Zbl 0871.65011
[7] Gautschi, W.; Milovanović, G. V., S-orthogonality and construction of Gauss-Turán-type quadrature formulae, J. Comput. Appl. Math., 86, 205-218 (1997) · Zbl 0890.65021
[8] Ghizzetti, A.; Ossicini, A., Quadrature Formulae (1970), Akademie Verlag: Akademie Verlag Berlin · Zbl 0194.36901
[9] Ghizzetti, A.; Ossicini, A., Sull’ esistenza e unicità delle formule di quadratura gaussiane, Rend. Mat., 6, 8, 1-15 (1975) · Zbl 0303.65021
[10] Golub, G.; Kautsky, J., Calculation of Gauss quadratures with multiple free and fixed knots, Numer. Math., 41, 147-163 (1983) · Zbl 0525.65010
[11] Golub, G.; Welsch, J. H., Calculation of Gauss quadrature rules, Math. Comp., 23, 221-230 (1969) · Zbl 0179.21901
[12] Gori, L.; Lo Cascio, M. L.; Milovanović, G. V., The \(σ\)-orthogonal polynomials: a method of construction, (Brezinski, C.; Gori, L.; Ronveaux, A., Orthogonal Polynomials and Their Applications. Orthogonal Polynomials and Their Applications, IMACS Ann. Comput. Appl. Math., Vol. 9 (1991), J.C. Baltzer AG, Scientific Publ. Co: J.C. Baltzer AG, Scientific Publ. Co Basel), 281-285 · Zbl 0831.65017
[13] Karlin, S.; Pinkus, A., Gaussian quadrature formulae with multiple nodes, (Karlin, S.; Micchelli, C. A.; Pinkus, A.; Schoenberg, I. J., Studies in Spline Functions and Approximation Theory (1976), Academic Press: Academic Press New York), 113-141 · Zbl 0345.41020
[14] Micchelli, C. A., The fundamental theorem of algebra for monosplines with multiplicities, (Butzer, P.; Kahane, J. P.; Nagy, B. Sz., Linear Operators and Approximation, ISNM Vol. 20 (1972), Birkhäuser: Birkhäuser Basel), 372-379 · Zbl 0288.65013
[15] Milovanović, G. V., Construction of s-orthogonal polynomials and Turán quadrature formulae, (Milovanović, G. V., Numerical Methods and Approximation Theory III (Niš, 1987) (1988), Univ. Niš: Univ. Niš Niš), 311-328 · Zbl 0643.65011
[16] Milovanović, G. V., S-orthogonality and generalized Turán quadratures: construction and applications, (Stancu, D. D.; Coman, Ch.; Breckner, W. W.; Blaga, P., Approximation and Optimization, Vol. I (Cluj-Napoca, 1996) (1997), Transilvania Press: Transilvania Press Cluj-Napoca, Romania), 91-106 · Zbl 0883.65014
[17] G.V. Milovanović, Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation, in: W. Gautschi, F. Marcellan, L. Reichel (Eds.), Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. J. Comput. Appl. Math. 127 (2001) 267-286.; G.V. Milovanović, Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation, in: W. Gautschi, F. Marcellan, L. Reichel (Eds.), Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. J. Comput. Appl. Math. 127 (2001) 267-286. · Zbl 0970.65023
[18] Milovanović, G. V.; Spalević, M. M., A numerical procedure for coefficients in generalized Gauss-Turán quadratures, FILOMAT (formerly Zb. Rad.), 9, 1-8 (1995) · Zbl 0845.65005
[19] Milovanović, G. V.; Spalević, M. M., Construction of Chakalov-Popoviciu’s type quadrature formulae, Rend. Circ. Mat. Palermo (2), II, Suppl. No. 52, 625-636 (1998) · Zbl 0906.65023
[20] A. Morelli, I. Verna, Formula di quadratura in cui compaiono i valori della funzione e delle derivate con ordine massimo variabile da nodo a nodo, Rend. Circ. Mat. Palermo (2) 18 (1969) 91-98.; A. Morelli, I. Verna, Formula di quadratura in cui compaiono i valori della funzione e delle derivate con ordine massimo variabile da nodo a nodo, Rend. Circ. Mat. Palermo (2) 18 (1969) 91-98. · Zbl 0253.41019
[21] Ossicini, A., Le funzioni di influenza nel problema di Gauss sulle formule di quadratura, Matematiche (Catania), 23, 7-30 (1968) · Zbl 0176.14402
[22] T. Popoviciu, Sur une généralisation de la formule d’intégration numérique de Gauss, Acad. R.P. Romı̂ ne Fil. Iaşi Stud. Cerc. Şti. 6 (1955) 29-57 (Romanian).; T. Popoviciu, Sur une généralisation de la formule d’intégration numérique de Gauss, Acad. R.P. Romı̂ ne Fil. Iaşi Stud. Cerc. Şti. 6 (1955) 29-57 (Romanian). · Zbl 0068.05003
[23] Spalević, M. M., Product of Turán quadratures for cube, simplex, surface of the sphere \(Ēn^r,En^{r^2\) · Zbl 0937.65027
[24] Stroud, A. H.; Stancu, D. D., Quadrature formulas with multiple Gaussian nodes, J. SIAM Numer. Anal. Ser. B, 2, 129-143 (1965) · Zbl 0141.13803
[25] Turán, P., On the theory of the mechanical quadrature, Acta Sci. Math. Szeged, 12, 30-37 (1950)
[26] Vincenti, G., On the computation of the coefficients of s-orthogonal polynomials, SIAM J. Numer. Anal., 23, 1290-1294 (1986) · Zbl 0632.65014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.