×

Gradient-dependent deformation of two-phase single crystals. (English) Zbl 0994.74012

Summary: We propose a gradient- and rate-dependent crystallographic formulation to investigate the macroscopic behaviour of two-phase single crystals. The slip-system-based constitutive formulation relies on strain-gradient concepts to account for the additional strengthening mechanism associated with the deformation gradients within a single crystal with a high volume fraction of dispersed inclusions. The resulting total slip resistance in each active system is assumed to be due to a mixed population of forest obstacles arising from both statistically stored and geometrically necessary dislocations. The non-local theory is implemented numerically into the finite element method, and is used to investigate the effect of relevant microstructural (i.e., size and volume fraction of precipitated inclusions) and deformation-gradient-related length scales on the macroscopic behaviour of a typical nickel-based superalloy single crystal. We also propose an analytical framework to link the strain-gradient effects at the microscopic level with macroscopic behaviour of an equivalent homogeneous single crystal.

MSC:

74E15 Crystalline structure
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Anon, ABAQUS V.5.6 (1997), Hibbitt, Karlsson and Sorensen, Inc: Hibbitt, Karlsson and Sorensen, Inc Providence, RI
[2] Alstom (UK), 1998. Private communication.; Alstom (UK), 1998. Private communication.
[3] Acharya, A.; Shawki, T. G., Thermodynamical restrictions on constitutive equations for second-deformation gradient inelastic behaviour, J. Mech. Phys. Solids, 43, 1751-1772 (1995) · Zbl 0876.73023
[4] Asaro, R. J., Crystal plasticity, J. Appl. Mech., 50, 921-934 (1983) · Zbl 0557.73033
[5] Asaro, R. J.; Rice, J. R., Strain localization in ductile single crystals, J. Mech. Phys. Solids, 25, 309-338 (1977) · Zbl 0375.73097
[6] Ashby, M. F., The deformation of plastically non-homogeneous materials, Phil. Mag., 21, 399-424 (1970)
[7] Busso, E.P., 1990. Cyclic deformation of monocrystalline nickel alluminide and high temperature coatings. Ph.D. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, MA.; Busso, E.P., 1990. Cyclic deformation of monocrystalline nickel alluminide and high temperature coatings. Ph.D. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, MA.
[8] Busso, E. P.; McClintock, F. A., A dislocation mechanics-based crystallographic model of a B2-type intermetallic alloy, Int. J. Plasticity, 12, 1-28 (1996)
[9] Busso, E. P.; Meissonnier, F. T.; O’Dowd, N. P., Length scale effects on the geometric softening of precipitated single crystal, J. de Phys. IV, 8, 55-61 (1998)
[10] Busso, E.P., Dennis, R.J., O’Dowd, N.P., Meissonnier, F.T., 2000. A crystallographic rate-dependent constitutive formulation for superalloy single crystals with microstructural length scales. Submitted for publication.; Busso, E.P., Dennis, R.J., O’Dowd, N.P., Meissonnier, F.T., 2000. A crystallographic rate-dependent constitutive formulation for superalloy single crystals with microstructural length scales. Submitted for publication.
[11] Cosserat, E.; Cosserat, F., Théorie des Corps Déformables (1909), Hermann et Fils: Hermann et Fils Paris · JFM 40.0862.02
[12] Dai, H.; Parks, D. M., Geometrically-necessary dislocation density and scale-dependent crystal plasticity, (Khan, A., Proceedings of Sixth International Symposium on Plasticity (1997), Gordon & Breach), 17-18
[13] Duhl, D. N., Directionally solidified superalloys, (Sims, C. T.; Stoloff, N. S.; Hagel, W. C., Superalloys II: High Temperature Materials for Aerospace and Industrial Power (1987), J. Wiley & Sons: J. Wiley & Sons New York), 189-214, Chapter 7
[14] Fleck, N. A.; Hutchinson, J. W., Strain gradient plasticity, (Hutchinson, J. W.; Wu, T. Y., Advances in Applied Mechanics, vol. 33 (1997), Academic Press: Academic Press New York), 295-361 · Zbl 0894.73031
[15] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W., Strain gradient plasticity: theory and experiment, Acta Metall. Mater., 42, 475-487 (1994)
[16] Forest, S., Modelling slip, kink and shear banding in classical and generalised single crystal plasticity, Acta Mater., 46, 3265-3281 (1998)
[17] Gao, H.; Huang, Y.; Nix, W. D.; Hutchinson, J. W., Mechanism-based strain gradient plasticity — I, Theory. J. Mech. Phys. Solids, 47, 1239-1263 (1999) · Zbl 0982.74013
[18] Hill, R.; Rice, J. R., Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solids, 20, 401-413 (1972) · Zbl 0254.73031
[19] Kalidindi, S. R.; Bronkhorst, C. A.; Anand, L., Crystallographic texture evolution in bulk deformation processing of FCC metals, J. Mech. Phys. Solids, 40, 537-569 (1992)
[20] Kocks, U. F., A statistical theory of flow stress and work hardening, Phil. Mag., 13, 541 (1966)
[21] Kröner, E., Kontinuumstheorie der versetzungen und eigenspannungen, (Ergebnisse der angewanten mathematik, vol. 5 (1958), Springer Verlag: Springer Verlag Berlin) · Zbl 0084.40003
[22] Lloyd, D. J., Particle reinforced aluminium and magnesium matrix composites, Int. Mater. Rev., 39, 1-23 (1994)
[23] Marquardt, D. W., J. Soc. Ind. Appl. Math., 11, 431-441 (1963) · Zbl 0112.10505
[24] Meissonnier, F.T., Busso, E.P., O’Dowd, N.P., 2000. Finite element implementation of a generalised non-local rate-dependent crystallographic formulation. Int. J. Plast., in press.; Meissonnier, F.T., Busso, E.P., O’Dowd, N.P., 2000. Finite element implementation of a generalised non-local rate-dependent crystallographic formulation. Int. J. Plast., in press.
[25] Meric, L.; Poubanne, P.; Cailletaud, G., Single crystal modeling for structural calculations: Part 1: Model presentation, J. Eng. Mater. Technol., 13, 162-170 (1991)
[26] Muhlhaus, H. B., Application of Cosserat theory in numerical solutions of limit load problems, Int. Arch., 59, 124-137 (1989)
[27] Nye, J. F., Some geometrical relations in dislocated crystals, Acta Metall., 1, 153-162 (1953)
[28] Pollock, T. M.; Argon, A. S., Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates, Acta Metall. Mater., 42, 1859-1874 (1994)
[29] Walker, K. P.; Jordan, E. H., Biaxial constitutive modelling and testing of a single crystal superalloy at elevated temperature, Report No. ESS-SCDS-8512 (1993), Engineering Science Software, Inc: Engineering Science Software, Inc Rhode Island, USA
[30] Zbib, H., Aifantis, E.C., 1989. On the localization and post-localization behaviour of plastic deformation. Part I: On the initiation of shear bands. Res. Mech., 261-277.; Zbib, H., Aifantis, E.C., 1989. On the localization and post-localization behaviour of plastic deformation. Part I: On the initiation of shear bands. Res. Mech., 261-277.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.