×

Simple polynomial classes of chaotic jerky dynamics. (English) Zbl 0993.37019

Summary: Third-order explicit autonomous differential equations, commonly called jerky dynamics, constitute a powerful approach to understand the properties of functionally very simple but nonlinear three-dimensional dynamical systems that can exhibit chaotic long-time behavior. In this paper, we investigate the dynamics that can be generated by the two simplest polynomial jerky dynamics that, up to these days, are known to show chaotic behavior in some parameter range. After deriving several analytical properties of these systems, we systematically determine the dependence of the long-time dynamical behavior on the system parameters by numerical evaluation of Lyapunov spectra. Some features of the systems that are related to the dependence on initial conditions are also addressed. The observed dynamical complexity of the two systems is discussed in connection with the existence of homoclinic orbits.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34C28 Complex behavior and chaotic systems of ordinary differential equations
Full Text: DOI

References:

[1] Argyris, J.; Faust, G.; Haase, M., An exploration of chaos (1994), North-Holland: North-Holland Amsterdam · Zbl 0805.58001
[2] Ott, E., Chaos in dynamical systems (1993), Cambridge University Press: Cambridge University Press New York · Zbl 0792.58014
[3] Strogatz, S. H., Nonlinear dynamics and chaos (1994), Addison-Wesley: Addison-Wesley Reading, MA
[4] Jackson, E. A., Perspectives of nonlinear dynamics I, II (1991), Cambridge University Press: Cambridge University Press New York · Zbl 0769.58019
[5] Wiggins, S., Introduction to applied nonlinear dynamical systems and chaos (1990), Springer: Springer New York · Zbl 0701.58001
[6] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (1993), Springer: Springer New York
[7] Drazin, P. G., Nonlinear systems (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0753.34001
[8] Moon, F. C., Chaotic vibrations (1987), Wiley: Wiley New York · Zbl 0745.58003
[9] Zhang Fu, Heidel J. Non-chaotic behavior in three-dimensional quadratic systems. Nonlinearity 1997;10:1289-303 (cf. the Erratum: Nonlinearity 1999;12:739); Zhang Fu, Heidel J. Non-chaotic behavior in three-dimensional quadratic systems. Nonlinearity 1997;10:1289-303 (cf. the Erratum: Nonlinearity 1999;12:739) · Zbl 0909.34041
[10] Heidel, J.; Zhang, Fu., Nonchaotic behavior in three-dimensional quadratic systems II. The conservative case, Nonlinearity, 12, 617-633 (1999) · Zbl 0998.34037
[11] Sprott, J. C., Some simple chaotic flows, Phys. Rev. E, 50, R647-R650 (1994)
[12] Sprott, J. C., Simplest dissipative chaotic flow, Phys. Lett. A, 228, 271-274 (1997) · Zbl 1043.37504
[13] Sprott, J. C., Some simple chaotic jerk functions, Am. J. Phys., 65, 537-543 (1997)
[14] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141 (1963) · Zbl 1417.37129
[15] Rössler, O. E., An equation for continuous chaos, Phys. Lett. A, 57, 397-398 (1976) · Zbl 1371.37062
[16] Eichhorn, R.; Linz, S. J.; Hänggi, P., Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows, Phys. Rev. E, 58, 7151-7164 (1998)
[17] von Baeyer, H. C., All shook up, The Sci., 38, 1, 12-14 (1998)
[18] Gottlieb, H. P.W., Qestion 38. What is the simplest jerk function that gives chaos?, Am. J. Phys., 64, 525 (1996)
[19] Linz, S. J., Nonlinear dynamical models and jerky motion, Am. J. Phys., 65, 523-526 (1997)
[20] Sprott, J. C., Some simple chaotic jerk functions, Am. J. Phys., 65, 537-543 (1997)
[21] Linz, S. J., Newtonian jerky dynamics: Some general properties, Am. J. Phys., 66, 1109-1114 (1998)
[22] Gottlieb, H. P.W., Simple nonlinear jerk functions with periodic solutions, Am. J. Phys., 66, 903-906 (1998)
[23] Linz, S. J.; Sprott, J. C., Elementary chaotic flow, Phys. Lett. A, 259, 240-245 (1999) · Zbl 0935.37008
[24] Malasoma, J. M., What is the simplest dissipative chaotic jerk equation which is parity invariant?, Phys. Lett. A, 264, 383-389 (2000) · Zbl 0947.34031
[25] Perko, L., Differential equations and dynamical sytems (1996), Springer: Springer New York · Zbl 0854.34001
[26] Rössler, O. E., Continuous chaos – four prototype equations, Ann. N. Y. Acad. Sci., 316, 376-392 (1979) · Zbl 0437.76055
[27] Coullet, P.; Tresser, C.; Arnéodo, A., Transition to stochasticity for a class of forced oscillators, Phys. Lett. A, 72, 268-270 (1979)
[28] Arnéodo, A.; Coullet, P.; Tresser, C., Oscillators with chaotic behavior: an illustration of a theorem by Shil’nikov, J. Stat. Phys., 27, 171-182 (1982) · Zbl 0522.58033
[29] Glendinning, P.; Sparrow, C., Local and global behavior near homoclinic orbits, J. Stat. Phys., 35, 645-696 (1984) · Zbl 0588.58041
[30] Arnéodo, A.; Coullet, P. H.; Spiegel, E. A.; Tresser, C., Asymptotic chaos, Physica D, 14, 327-347 (1985) · Zbl 0595.58030
[31] Bronstein IN, Semendjajew KA. Taschenbuch der Mathematik. Harri Deutsch: Frankfurt/Main; 1987; Bronstein IN, Semendjajew KA. Taschenbuch der Mathematik. Harri Deutsch: Frankfurt/Main; 1987
[32] Eckmann, J. P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617-656 (1985) · Zbl 0989.37516
[33] Campanino, M., Two remarks on the computer study of differentiable dynamical systems, Comm. Math. Phys., 74, 15-20 (1980) · Zbl 0429.58011
[34] Shimada, I.; Nagashima, T., A numerical approach to ergodic problem of dissipative dynamical systems, Prog. Theo. Phys., 61, 1605-1616 (1979) · Zbl 1171.34327
[35] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J. M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them Part I. Theory, Meccanica, 15, 9-20 (1980) · Zbl 0488.70015
[36] Maccari, A., The non-local oscillator, Nuovo Cimento, 111, 917-930 (1996) · Zbl 0890.44004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.