×

Torus knots and polynomial invariants for a class of soliton equations. (English) Zbl 0992.53500

Chaos 3, No. 1, 83-91 (1993); Errata ibid. 5, No. 1, 346 (1995).
Summary: In this paper it is shown how to interpret the nonlinear dynamics of a class of one-dimensional physical systems exhibiting soliton behavior in terms of Killing fields for the associated dynamical laws acting as generators of torus knots. Soliton equations are related to dynamical laws associated with the intrinsic kinematics of space curves and torus knots are obtained as traveling wave solutions to the soliton equations. For the sake of illustration a full calculation is carried out by considering the Killing field that is associated with the nonlinear Schrödinger equation. Torus knot solutions are obtained explicitly in cylindrical polar coordinates via perturbation techniques from the circular solution. Using the Hasimoto map, the soliton conserved quantities are interpreted in terms of global geometric quantities and it is shown how to express these quantities as polynomial invariants for torus knots. The techniques here employed are of general interest and lead us to make some conjectures on natural links between the nonlinear dynamics of one-dimensional extended objects and the topological classification of knots.
The Erratum corrects equation (20).

MSC:

53A04 Curves in Euclidean and related spaces
57M25 Knots and links in the \(3\)-sphere (MSC2010)
Full Text: DOI

References:

[1] Zakharov V. E., Zh. Eksp. Teor. Fiz. 61 pp 118– (1971)
[2] Zakharov V. E., Sov. Phys. JETP 34 pp 62– (1972)
[3] DOI: 10.1017/S0022112072002307 · Zbl 0237.76010 · doi:10.1017/S0022112072002307
[4] DOI: 10.1063/1.523453 · Zbl 0351.35019 · doi:10.1063/1.523453
[5] DOI: 10.1063/1.524273 · Zbl 0416.70016 · doi:10.1063/1.524273
[6] DOI: 10.1016/0375-9601(80)90024-9 · doi:10.1016/0375-9601(80)90024-9
[7] DOI: 10.1063/1.524387 · Zbl 0456.35082 · doi:10.1063/1.524387
[8] Chinea F. J., J. Math. Phys. 21 pp 1588– (1980) · Zbl 0451.35053 · doi:10.1063/1.524643
[9] Hermann R., J. Math. Phys. 24 pp 510– (1983) · Zbl 0521.58063 · doi:10.1063/1.525748
[10] Klein J. J., J. Math. Phys. 26 pp 2181– (1985) · doi:10.1063/1.526842
[11] DOI: 10.1016/0370-1573(89)90123-3 · doi:10.1016/0370-1573(89)90123-3
[12] DOI: 10.1103/PhysRevLett.67.3203 · Zbl 0990.37519 · doi:10.1103/PhysRevLett.67.3203
[13] Ricca R. L., Phys. Fluids A 4 pp 938– (1992) · Zbl 0756.76016 · doi:10.1063/1.858274
[14] Ricca R. L., Phys. Rev. A 43 pp 4281– (1991) · doi:10.1103/PhysRevA.43.4281
[15] DOI: 10.1007/BF01209148 · Zbl 0795.35115 · doi:10.1007/BF01209148
[16] Onuki A., Prog. Theor. Phys. 74 pp 979– (1985) · Zbl 0979.35524 · doi:10.1143/PTP.74.979
[17] Hasimoto H., J. Phys. Soc. Jpn. 54 pp 5– (1985) · doi:10.1143/JPSJ.54.5
[18] Konno K., J. Phys. Soc. Jpn. 59 pp 3417– (1990) · doi:10.1143/JPSJ.59.3417
[19] DOI: 10.1038/352561a0 · doi:10.1038/352561a0
[20] Balakrishnan R., Mod. Phys. Lett. B 4 pp 1005– (1990) · doi:10.1142/S0217984990001264
[21] Turski L. A., Can. J. Phys. 59 pp 511– (1981) · Zbl 1043.82542 · doi:10.1139/p81-065
[22] Lakshmanan M., J. Phys. A 22 pp 4735– (1989) · Zbl 0711.35130 · doi:10.1088/0305-4470/22/21/034
[23] Fukumoto Y., J. Fluid Mech. 222 pp 369– (1991) · Zbl 0719.76020 · doi:10.1017/S0022112091001143
[24] DOI: 10.1063/1.526109 · Zbl 0558.35065 · doi:10.1063/1.526109
[25] Mertsching J., Fortschr. Phys. 35 pp 519– (1987) · doi:10.1002/prop.2190350704
[26] DOI: 10.1017/S0022112081000475 · Zbl 0484.76030 · doi:10.1017/S0022112081000475
[27] DOI: 10.1017/S0022112090001732 · Zbl 0686.76014 · doi:10.1017/S0022112090001732
[28] DOI: 10.1143/JPSJ.31.591 · doi:10.1143/JPSJ.31.591
[29] McGuinness M. J., J. Math. Phys. 21 pp 2743– (1980) · Zbl 0451.35060 · doi:10.1063/1.524392
[30] DOI: 10.1063/1.528020 · Zbl 0695.35038 · doi:10.1063/1.528020
[31] DOI: 10.1109/PROC.1973.9296 · doi:10.1109/PROC.1973.9296
[32] DOI: 10.1017/S0022112065000915 · Zbl 0133.43803 · doi:10.1017/S0022112065000915
[33] DOI: 10.1112/jlms/s2-30.3.512 · Zbl 0595.53001 · doi:10.1112/jlms/s2-30.3.512
[34] Langer J., J. Diff. Geom. 20 pp 1– (1984)
[35] Abresch U., J. Diff. Geom. 23 pp 175– (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.