×

On the Fatou set of an entire function with gaps. (English) Zbl 0991.30015

Let \(f\) be a nonlinear entire function for which \(F(f)\) denotes its Fatou set (i.e. the largest open set in the complex plane where the family \(\{f^n\}\) of iterates of \(f\) forms a normal family). Suppose \(f(z)\) has the power series representation \(\sum^\infty_{k=0} a_kz^{n_k}\). Then the author presents two situations in which every component of \(F(f)\) is bounded: (1) \(f\) has finite order but positive lower order and \(n_k/k \to\infty\) as \(k\to\infty\); and \[ \liminf_{r\to \infty}\bigl\{ \log M(r^T,f)/ \log M(r,f)\bigr\} >T\tag{2} \] for some number \(T>1\) and \(n_k>k\log k(\log\log k)^\alpha\) as \(k\to\infty\) for some \(\alpha>2\). The proofs, which are parallel in character and intricate in substance, make use of deep results of W. H. J. Fuchs [Ill. J. Math. 7, 661-667 (1963; Zbl 0113.28702)], W. Hayman [Proc. Lond. Math. Soc., III. Ser. 24, 590-624 (1972; Zbl 0239.30035)], and I. N. Baker [J. Aust. Math. Soc., Ser A 30, 483-495 (1981; Zbl 0474.30023)], and an argument used by Baker. Interest in the question stems from Baker’s question of whether every component of \(F(f)\) must be bounded if \(f\) is of sufficiently small growth.
Reviewer: L.R.Sons (DeKalb)

MSC:

30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
32H50 Iteration of holomorphic maps, fixed points of holomorphic maps and related problems for several complex variables
Full Text: DOI

References:

[1] J. M. ANDERSON AND K. G. BINMORE, Coefficient estimates for lacunary power series and Dirichlet series II, Proc. London Math. Soc.(3) 18 (1968), 49-68. · Zbl 0158.31501 · doi:10.1112/plms/s3-18.1.36
[2] J. M. ANDERSON AND J. CLUNIE, Entire functions of finite order and lines of Julia, Math. Z. 112 (1969), 59-73. · Zbl 0216.10101 · doi:10.1007/BF01277495
[3] J. M. ANDERSON AND A. HINKKANEN, Unbounded domains of normality, Proc. Amer. Math. Soc. 12 (1998), 3243-3252. JSTOR: · Zbl 0902.30021 · doi:10.1090/S0002-9939-98-04370-6
[4] I. N. BAKER, Zusammensetzungen ganer Funktionen, Math. Z. 69 (1958), 121-163 · Zbl 0178.07502 · doi:10.1007/BF01187396
[5] I. N. BAKER, The iteration of polynomials and transcendental entire functions, J. Austral. Math. Soc.Ser. 30 (1981), 483-495. · Zbl 0474.30023 · doi:10.1017/S1446788700017961
[6] I. N. BAKER, Iteration of entire functions: an introductory survey, Lectures on complex analysis (Xian, 1987), 1-17, World Sci.Publishing, Singapore, London, 1988. · Zbl 0746.30003
[7] A. F. BEARDON, Iteration of rational functions, Springer-Verlag, New York, Berlin, 1991 · Zbl 0742.30002
[8] W. BERGWEILER, Iteration of meromorphic functions, Bull. Amer. Math. Soc.29 (1993), 151-188 · Zbl 0791.30018 · doi:10.1090/S0273-0979-1993-00432-4
[9] M. BIERNACKI, Sur les equations algebriques contenant des paprametres arbitraires, Bull. Int. Acad. Polon Sci. Lett. Ser.A (III) (1927), 542-685. · JFM 56.0863.02
[10] L. CARLESON AND T. GAMELIN, Complex dynamics, Springer-Verlag, New York, Berlin, 1993 · Zbl 0782.30022
[11] A. EREMENKO AND M. LYUBICH, The dynamics of analytic transforms, Leningrad Math. J. 1 (1990), 563 634. · Zbl 0717.58029
[12] L. FEJER, Uber die Wurzel vom kleinsten absoluten Betrage einer algebraischen Gleichung, Math. Ann (1908), 413-423. · JFM 39.0123.02 · doi:10.1007/BF01456420
[13] W. H. J. FUCHS, Proof of a conjecture of G. Plya concerning gap series, Illinois J. Math. 7 (1966), 661-667 · Zbl 0113.28702
[14] W. K. HAYMAN, Angular value distribution of power series with gaps, Proc. London Math. Soc. (3) 24 (1972), 590-624. · Zbl 0239.30035 · doi:10.1112/plms/s3-24.4.590
[15] T. KOVARI, On the Borel exceptional values of lacunary integral functions, J. Analyse Math. 9 (1961), 71-109 · Zbl 0101.05302 · doi:10.1007/BF02795340
[16] T. KOVARI, Asymptotic values of entire functions of finite order with density conditions, Acta Sci.Math (Szeged) 26 (1965), 233-237. · Zbl 0134.05404
[17] A. J. MACINTYRE, Asymptotic paths of integral functions with gap power series, Proc. London Math.Soc (3) 2 (1952), 286-296. · Zbl 0048.05502 · doi:10.1112/plms/s3-2.1.286
[18] J. MILNOR, Dynamics in one complex variable: Introductory lectures, Friedr. Vieweg & Sohn, Braunschweig, 1999. · Zbl 0946.30013
[19] C. McMULLEN, Complex dynamics and renormalization, Ann. of Math. Stud. 135, Princeton Univ. Press, Princeton, NJ, 1994. · Zbl 0822.30002
[20] T. MURAI, The deficiency of entire functions with Fejer gaps, Ann. Inst. Fourier (Grenoble) 33 (1983), 39-58 170Y. WANG · Zbl 0489.30028 · doi:10.5802/aif.930
[21] G. POLYA, Untersuchungen, ber Lcken und Singularitaten von Potenzreichen, Math. Z. 29 (1929), 549-640 · JFM 55.0186.02 · doi:10.1007/BF01180553
[22] L. R. SONS, An analogue of a theorem of W. H. J. Fuchs on gap series, Proc. London Math. Soc. (3) 2 (1970), 525-539. · Zbl 0206.08801 · doi:10.1112/plms/s3-21.3.525
[23] G. M. STALLARD, The iteration of entire functions of small growth, Math. Proc. Cambridge Philos. Soc.11 (1993), 43-55. · Zbl 0782.30023 · doi:10.1017/S0305004100071395
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.