×

The Obrechkoff transform on spaces of generalized functions. (English) Zbl 0989.46025

The integral transformation introduced by N. Obreshkov [Izv. Mat. Institut Bulg. Akad. Sci., Sofia, 3-28 (1958, in Bulgarian); English transl. in East J. Approx. 3, No. 1, 89-110 (1997; Zbl 0896.45003)] stands for a generalization of the classical Laplace and Meijer transforms, and is closely related to a general differential operator of Bessel-type (also called “hyper-Bessel differential operator”): \[ B= x^{\alpha_0}{d\over dx} x^{\alpha_1}{d\over dx}\cdots x^{\alpha_{m-1}}{d\over dx} x^{\alpha_m}= x^{-\beta} \prod^m_{j=1} \Biggl(x{d\over dx}+ \beta\gamma_k\Biggr) \] with \(m\in\mathbb{N}\), \(\beta= m-(\alpha_0+ \alpha_1+\cdots+ \alpha_m)> 0\), \(\gamma_k= (\alpha_k+ \alpha_{k+1}+\cdots+ \alpha_m- m+ k)/\beta\), \(k= 1,\dots, m\).
In the present paper the authors study the Obreshkov transform in the following form: \[ O\{f(t); z\}=\beta z^{-\beta(\gamma_m+ 1)+ 1} \int^\infty_0 G^{m,0}_{0,m}((zt)^\beta\mid (\gamma_k+ 1-1/\beta)^m_1) f(t) dt, \] where \(G^{m,0}_{0,m}\) is an interesting particular case of the Meijer-\(G\) function [see V. Kiryakova, “Generalized fractional calculus and applications”, Pitman Res. Notes Math. Ser. 301 (1994; Zbl 0882.26003)] and analyze \(O\{f(t); z\}\) on the McBride functional space \(F_{p,\mu}\) (\(\mu\in\mathbb{C}\), \(1\leq p<\infty\)) [see A. C. McBridge, “Pitman Res. Notes Math. 31 (1979; Zbl 0423.46029)] by means of the kernel method. Properties of the generalized transform, such as analyticity, boundedness and an inversion formula are established, thus extending results given by A. Baier and H.-J. Glaeske [Math. Nachr. 159, 311-322 (1992; Zbl 0774.46025)] and J. J. Betancor and L. Rodriguez-Mesa [Math. Nachr. 185, 21-31 (1997; Zbl 0902.46019)].

MSC:

46F12 Integral transforms in distribution spaces
44A15 Special integral transforms (Legendre, Hilbert, etc.)

References:

[1] A. Baier and H.-J. Glaeske, The Laplace transformation on certain spaces of generalized functions , Math. Nachr. 159 (1992), 311-322. · Zbl 0774.46025 · doi:10.1002/mana.19921590122
[2] J.J. Betancor and L. Rodríguez-Mesa, The \(K_\mu\)-transformation on McBride’s spaces of generalized functions , Math. Nachr. 185 (1997), 21-31. · Zbl 0902.46019 · doi:10.1002/mana.3211850103
[3] D.I. Cruz-Báez and J. Rodríguez, The \(\L^(p)_\nu\)-transformation on McBride’s spaces of generalized functions , Comment. Math. Univ. Carolin. 39 (1998), 445-452. · Zbl 0971.44002
[4] I. Dimovski, A transform approach to operational calculus for the general Bessel-type differential operator , C.R. Acad. Bulg. Sci. 27 (1974), 155-158. · Zbl 0325.44004
[5] I. Dimovski and V. Kiryakova, On an integral transformation, due to N. Obrechkoff , Lecture Notes in Math. 798 (1980), 141-147. · Zbl 0441.44005
[6] V. Kiryakova, Generalized fractional calculus and applications , Pitman Res. Notes Math. Ser. 301 , Longman Scientific & Technical, Harlow, UK, 1994. · Zbl 0882.26003
[7] E. Krätzel, Eine Verallgemeineiung der Laplace- und Meijer- Transformation , Wiss. Z. Friedrich-Shiller-Univ. Math.-naturwiss Reihe 14 (1965), 369-381. · Zbl 0168.10204
[8] ——–, Differentiationssätze der L- Transformation und Differentialgleichungen nach dem Operator , Math. Nachr. 35 (1967), 105-114. · Zbl 0168.10301 · doi:10.1002/mana.19670350107
[9] ——–, Übertragung der Post-Widderschen Umkehrformel del Laplace-Transformation auf die L-Transformation , Math. Nachr. 35 (1967), 295-304. · Zbl 0157.19602 · doi:10.1002/mana.19670350506
[10] A.C. McBride, Fractional calculus and integral transforms of generalized functions , Res. Notes Math. 31 , Pitman Press, London, San Francisco, 1979. · Zbl 0423.46029
[11] ——–, Fractional powers of a class ordinary differential operators , Proc. London Math. Soc. (3) 45 (1982), 519-546. · Zbl 0462.44006 · doi:10.1112/plms/s3-45.3.519
[12] N. Obrechkoff, On certain integral representations of real functions on the real semi-axis , Izvestiya Mat. Institut (Bulg. Akad. Sci., Sofia) 3 (1958), 3-28 (in Bulgarian); English trans. in East J. on Approximations 3 (1997), 89-110.
[13] A.H. Zemanian, Generalized integral transformation , Interscience Publisher, New York, 1968. · Zbl 0181.12701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.