×

Residual a posteriori error estimates for two-level finite element methods for the Navier-Stokes equations. (English) Zbl 0987.76053

Summary: We derive residual-based a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations which are computed with four two-level methods. The a posteriori error estimates contain additional terms in comparison to the estimates obtained by the standard one-level method. The importance of these additional terms in the error estimates is investigated by studying their asymptotic behaviour. For optimally scaled meshes, these bounds are not of order higher than the order of convergence of discrete solution.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65N15 Error bounds for boundary value problems involving PDEs
Full Text: DOI

References:

[1] L. Angermann, A posteriori error estimates for FEM with violated Galerkin orthogonality, Numer. Methods Partial Differential Equations (2001) to appear; L. Angermann, A posteriori error estimates for FEM with violated Galerkin orthogonality, Numer. Methods Partial Differential Equations (2001) to appear · Zbl 1003.65058
[2] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods. Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15 (1991), Springer-Verlag · Zbl 0788.73002
[3] Carstensen, C.; Funken, S. A., Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods, East-West J. Numer. Anal., 8, 3, 153-176 (2000) · Zbl 0973.65091
[4] Carstensen, C.; Funken, S. A., Fully reliable localised error control in FEM, SIAM J. Sci. Comput., 21, 4, 1465-1484 (2000) · Zbl 0956.65099
[5] Ciarlet, P. G., Basic error estimates for elliptic problems, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis II (1991), North-Holland: North-Holland Amsterdam), 19-351 · Zbl 0875.65086
[6] Clément, Ph., Approximation by finite element functions using local regularization, RAIRO Anal. Numer., 2, 77-84 (1975) · Zbl 0368.65008
[7] Constantin, P.; Foias, C., Navier-Stokes Equations (1988), University of Chicago Press: University of Chicago Press Chicago · Zbl 0687.35071
[8] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Introduction to adaptive methods for differential equations, Acta Numer., 105-158 (1995) · Zbl 0829.65122
[9] Ervin, V.; Layton, W.; Maubach, J., A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations, Numer. Methods Partial Differential Equations, 12, 333-346 (1996) · Zbl 0852.76039
[10] Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0413.65081
[11] John, V., A posteriori \(L^2-error estimates for the nonconforming P1/P0\)-finite element discretization of the Stokes equations, J. Comput. Appl. Math., 96, 2, 99-116 (1998) · Zbl 0930.65123
[12] Johnson, C., On computability and error control in CFD, Internat. J. Numer. Methods Fluids, 20, 777-788 (1995) · Zbl 0836.76079
[13] Johnson, C.; Rannacher, R., On error control in CFD, (Hebeker; Rannacher; Wittum, Numerical Methods for the Navier-Stokes Equations. Numerical Methods for the Navier-Stokes Equations, Notes on Numerical Fluid Mechanics, 47 (1994), Vieweg), 133-144 · Zbl 0874.76037
[14] Layton, W., A two-level discretization method for the Navier-Stokes equations, Comput. Math. Appl., 26, 2, 33-38 (1993) · Zbl 0773.76042
[15] Layton, W.; Lenferink, W., Two-level Picard and modified Picard methods for the Navier-Stokes equations, Appl. Math. Comput., 69, 2-3, 263-274 (1995) · Zbl 0828.76017
[16] Layton, W.; Lenferink, W., A multilevel mesh independence principle for the Navier-Stokes equations, SIAM J. Numer. Anal., 33, 17-30 (1996) · Zbl 0844.76053
[17] Layton, W.; Tobiska, L., A two-level method with backtracking for the Navier-Stokes equations, SIAM J. Numer. Anal., 35, 5, 2035-2054 (1998) · Zbl 0913.76050
[18] Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis. Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Conference Series, 41 (1983), SIAM: SIAM Philadelphia, PA · Zbl 0522.35002
[19] Verfürth, R., A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (1996), Wiley and Teubner · Zbl 0853.65108
[20] Verfürth, R., A posteriori error estimates for nonlinear problems. \(L^r\)-estimates for finite element discretizations of elliptic equations, Math. Comp., 67, 224, 1335-1360 (1998) · Zbl 0907.65090
[21] Wu, L.; Allen, M. B., A two-grid method for mixed finite-element solution of reaction-diffusion equations, Numer. Methods Partial Differential Equations, 15, 3, 317-332 (1999) · Zbl 0929.65079
[22] Xu, J., Iterative methods by space decomposition and subspace correction, SIAM Rev., 34, 4, 581-613 (1992) · Zbl 0788.65037
[23] Xu, J., A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15, 1, 231-237 (1994) · Zbl 0795.65077
[24] Xu, J., Two-grid finite element discretizations for nonlinear p.d.e.’s, SIAM J. Numer. Anal., 33, 5, 1759-1777 (1996) · Zbl 0860.65119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.