×

Symmetric approximation of frames and bases in Hilbert spaces. (English) Zbl 0984.42021

Let \(H\) be a Hilbert space and \(\{f_i\}_{i=1}^n\) a family of vectors in \(H\). Then \(\{f_i\}_{i=1}^n\) is a frame for its linear span, i.e., there exist constants \(A,B>0\) such that \[ A\|f\|^2 \leq \sum_{i=1}^n |\langle f, f_i\rangle|^2 \leq B \|f\|^2 \] for all \(f\in \text{span}\{f_i\}_{i=1}^n\). Defining \(Sf= \displaystyle\sum_{i=1}^n \langle f, f_i\rangle f_i\), the operator \(S\) is invertible on \(\text{span}\{f_i\}_{i=1}^n\), and \[ f= \sum_{i=1}^n \langle f, S^{-1}f_i\rangle f_i, \quad f\in \text{span}\{f_i\}_{i=1}^n. \] If the frame is tight and normalized, i.e., if we can choose \(A=B=1\), then \(S=I\), and the cumbersome inversion of \(S\) needed to apply this formula in the general case is avoided. For this reason it is desirable to approximate given frames by normalized tight frames. A normalized tight frame \(\{\nu_i\}_{i=1}^n\) is called a symmetric approximation of the given frame \(\{f_i\}_{i=1}^n\) if \(\{\nu_i\}_{i=1}^n\) spans the same space as \(\{f_i\}_{i=1}^n\) and furthermore minimizes \(\sum_{i=1}^n \|f_i - \mu_i \|^2\) among all normalized tight frames \(\{\mu_i\}_{i=1}^n\) with this property. It is proved that a symmetric approximation exists and is unique. Furthermore, if \(\{f_i\}_{i=1}^n\) is linearly independent, then \(\{\nu_i\}_{i=1}^n\) is an orthonormal system. Extensions to frames \(\{f_i\}_{i=1}^\infty\) for infinite-dimensional subspaces of \(H\) are given.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)
65T60 Numerical methods for wavelets

References:

[1] John G. Aiken, John A. Erdos, and Jerome A. Goldstein, Unitary approximation of positive operators, Illinois J. Math. 24 (1980), no. 1, 61 – 72. · Zbl 0404.47014
[2] J. G. AIKEN, J. A. ERDOS AND J. A. GOLDSTEIN, On Löwdin orthogonalization, Internat. J. Quantum Chem. 18(1980), 1101-1108.
[3] Akram Aldroubi, Portraits of frames, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1661 – 1668. · Zbl 0851.42030
[4] Peter G. Casazza, Every frame is a sum of three (but not two) orthonormal bases — and other frame representations, J. Fourier Anal. Appl. 4 (1998), no. 6, 727 – 732. · Zbl 0935.46022 · doi:10.1007/BF02479676
[5] P. G. CASAZZA, The art of frame theory, preprint, math.FA/9910168 at xxx.lanl.gov, 1999; e Taiwanese J. Math. 4 (2000), 129-201. CMP 2000:13
[6] Peter G. Casazza and Ole Christensen, Hilbert space frames containing a Riesz basis and Banach spaces which have no subspace isomorphic to \?\(_{0}\), J. Math. Anal. Appl. 202 (1996), no. 3, 940 – 950. · Zbl 0867.46013 · doi:10.1006/jmaa.1996.0355
[7] Peter G. Casazza and Ole Christensen, Frames containing a Riesz basis and preservation of this property under perturbations, SIAM J. Math. Anal. 29 (1998), no. 1, 266 – 278. · Zbl 0922.42024 · doi:10.1137/S0036141095294250
[8] Ole Christensen, Frame perturbations, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1217 – 1220. · Zbl 0838.42018
[9] Ole Christensen, A Paley-Wiener theorem for frames, Proc. Amer. Math. Soc. 123 (1995), no. 7, 2199 – 2201. · Zbl 0833.42019
[10] Ole Christensen and Christopher Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997), 33 – 47. · Zbl 0868.42013 · doi:10.1002/mana.3211850104
[11] Xingde Dai and David R. Larson, Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc. 134 (1998), no. 640, viii+68. · Zbl 0990.42022 · doi:10.1090/memo/0640
[12] M. FRANK AND D. R. LARSON, Frames in Hilbert C*-modules and C*-algebras, preprint, University of Houston, Houston, and Texas A&M University, College Station, Texas, U.S.A., 1998.
[13] Michael Frank and David R. Larson, A module frame concept for Hilbert \?*-modules, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999) Contemp. Math., vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 207 – 233. · Zbl 0949.46027 · doi:10.1090/conm/247/03803
[14] Jerome A. Goldstein and Mel Levy, Linear algebra and quantum chemistry, Amer. Math. Monthly 98 (1991), no. 8, 710 – 718. · Zbl 0755.46041 · doi:10.2307/2324422
[15] Deguang Han and David R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (2000), no. 697, x+94. · Zbl 0971.42023 · doi:10.1090/memo/0697
[16] James R. Holub, Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces, Proc. Amer. Math. Soc. 122 (1994), no. 3, 779 – 785. · Zbl 0821.46008
[17] James R. Holub, The equivalence of frames, Bull. Polish Acad. Sci. Math. 45 (1997), no. 1, 73 – 76. · Zbl 0901.46010
[18] Eugen J. Ionascu, David R. Larson, and Carl M. Pearcy, On the unitary systems affiliated with orthonormal wavelet theory in \?-dimensions, J. Funct. Anal. 157 (1998), no. 2, 413 – 431. · Zbl 0919.42030 · doi:10.1006/jfan.1998.3277
[19] Slobodan Lakić, Two iterative methods for the matrix inverse square root, Fasc. Math. 26 (1996), 91 – 110. · Zbl 0859.65039
[20] P.-O. LÖWDIN, On the nonorthogonality problem, Adv. Quantum Chem. 5(1970), 185-199.
[21] Bernard Philippe, An algorithm to improve nearly orthonormal sets of vectors on a vector processor, SIAM J. Algebraic Discrete Methods 8 (1987), no. 3, 396 – 403. · Zbl 0631.65036 · doi:10.1137/0608032
[22] Kristian Seip, On the connection between exponential bases and certain related sequences in \?²(-\?,\?), J. Funct. Anal. 130 (1995), no. 1, 131 – 160. · Zbl 0872.46006 · doi:10.1006/jfan.1995.1066
[23] N. Sherif, On the computation of a matrix inverse square root, Computing 46 (1991), no. 4, 295 – 305 (English, with German summary). · Zbl 0741.65039 · doi:10.1007/BF02257775
[24] Nagwa Sherif, On optimal symmetric orthogonalisation and square roots of a normal matrix, Bull. Austral. Math. Soc. 47 (1993), no. 2, 233 – 246. · Zbl 0781.65038 · doi:10.1017/S0004972700012478
[25] T. R. TIBALLI, Symmetric orthogonalization of vectors in Hilbert spaces, Ph.D. Thesis, University of Houston, Houston, Texas, U.S.A., 1991.
[26] C. E. D’Attellis and E. M. Fernández-Berdaguer , Wavelet theory and harmonic analysis in applied sciences, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 1997. Papers from the 1st Latinamerican Conference on Mathematics in Industry and Medicine held in Buenos Aires, November 27 – December 1, 1995. · Zbl 0868.00052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.