×

Dissociation of HIV-1 from follicular dendritic cells during HAART: Mathematical analysis. (English) Zbl 0983.92014

Follicular dendritic cells (FDC) provide a reservoir for HIV type 1 (HIV-1) that may reignite infection if highly active antiretroviral therapy (HAART) is withdrawn before virus on FDC is cleared. To estimate the treatment time required to eliminate HIV-1 on FDC, we develop deterministic and stochastic models for the reversible binding of HIV-1 to FDC via ligand-receptor interactions and examine the consequences of reducing the virus available for binding to FDC. Analysis of these models shows that the rate at which HIV-1 dissociates from FDC during HAART is biphasic, with an initial period of rapid decay followed by a period of slower exponential decay. The speed of the slower second stage of dissociation and the treatment time required to eradicate the FDC reservoir of HIV-1 are insensitive to the number of virions bound and their degree of attachment to FDC before treatment.
In contrast, the expected time required for dissociation of an individual virion from FDC varies sensitively with the number of ligands attached to the virion that are available to interact with receptors on FDC. Although most virions may dissociate from FDC on the time scale of days to weeks, virions coupled to a higher-than-average number of ligands may persist on FDC for years. This result suggests that HAART may not be able to clear all HIV-1 trapped on FDC and that, even if clearance is possible, years of treatment will be required.

MSC:

92C50 Medical applications (general)
60J85 Applications of branching processes
Full Text: DOI

References:

[1] Pantaleo, Nature; Physical Science (London) 362 (6418) pp 355– (1993) · doi:10.1038/362355a0
[2] Heath, Nature; Physical Science (London) 377 (6551) pp 740– (1995) · doi:10.1038/377740a0
[3] Haase, Science 274 (5289) pp 985– (1996) · doi:10.1126/science.274.5289.985
[4] Cavert, Science 276 (5314) pp 960– (1997) · doi:10.1126/science.276.5314.960
[5] Wong, PNAS 94 (23) pp 12574– (1997) · doi:10.1073/pnas.94.23.12574
[6] Stellbrink, AIDS (London, England) 11 (9) pp 1103– (1997) · doi:10.1097/00002030-199709000-00004
[7] Journal of Experimental Medicine 187 (6) pp 949– (1998) · doi:10.1084/jem.187.6.949
[8] Mandel, Immunological reviews 53 pp 29– (1980) · doi:10.1111/j.1600-065X.1980.tb01039.x
[9] Joling, The Journal of Immunology 150 (3) pp 1065– (1993)
[10] Reynes, The Journal of Immunology 135 (4) pp 2687– (1985)
[11] Ross, Advances in immunology 37 pp 217– (1985) · doi:10.1016/S0065-2776(08)60341-7
[12] Sullivan, The Journal of Immunology 157 (4) pp 1791– (1996)
[13] Sullivan, Virology 248 (2) pp 173– (1998) · doi:10.1006/viro.1998.9289
[14] Ebenbichler, Journal of Experimental Medicine 174 (6) pp 1417– (1991) · doi:10.1084/jem.174.6.1417
[15] Tacnet-Delorme, The Journal of Immunology 162 (7) pp 4088– (1999)
[16] Moore, Journal of Biological Chemistry 264 (34) pp 20576– (1989)
[17] Mathematical biosciences 53 pp 1– (1981) · Zbl 0478.92007 · doi:10.1016/0025-5564(81)90036-5
[18] Wickham, Biophysical Journal 58 (6) pp 1501– (1990) · doi:10.1016/S0006-3495(90)82495-4
[19] Shoup, Biophysical Journal 40 (1) pp 33– (1982) · doi:10.1016/S0006-3495(82)84455-X
[20] DeLisi, PNAS 78 (9) pp 5569– (1981) · doi:10.1073/pnas.78.9.5569
[21] Schmitz, The Journal of Immunology 153 (3) pp 1352– (1994)
[22] Thieblemont, AIDS research and human retroviruses 9 (3) pp 229– (1993) · doi:10.1089/aid.1993.9.229
[23] Gelderblom, Virology 156 (1) pp 171– (1987) · doi:10.1016/0042-6822(87)90449-1
[24] Wyatt, Science 280 (5371) pp 1884– (1998) · doi:10.1126/science.280.5371.1884
[25] Rasmussen, Complement (Basel, Switzerland) 5 (2) pp 98– (1988)
[26] Tooze, Clinical and experimental immunology 83 (3) pp 423– (1991) · doi:10.1111/j.1365-2249.1991.tb05655.x
[27] LECT MATH LIFE SCI 24 pp 109– (1994)
[28] Nagar, Science 280 (5367) pp 1277– (1998) · doi:10.1126/science.280.5367.1277
[29] Fr  meaux-Bacchi, European journal of immunology 26 (7) pp 1497– (1996) · doi:10.1002/eji.1830260714
[30] Kalli, The Journal of Immunology 147 (2) pp 590– (1991)
[31] Diefenbach, The Journal of Immunology 154 (5) pp 2303– (1995)
[32] Gentile, Journal of virological methods 48 (1) pp 43– (1994) · doi:10.1016/0166-0934(94)90087-6
[33] Liszewski, Advances in immunology 61 pp 201– (1996) · doi:10.1016/S0065-2776(08)60868-8
[34] Yamakawa, Immunology 76 (3) pp 378– (1992)
[35] Zhang, New England Journal of Medicine 340 (21) pp 1605– (1999) · doi:10.1056/NEJM199905273402101
[36] Furtado, New England Journal of Medicine 340 (21) pp 1614– (1999) · doi:10.1056/NEJM199905273402102
[37] Szakal, The Journal of Immunology 140 (2) pp 341– (1988)
[38] Ling, Clinical and experimental immunology 113 (3) pp 360– (1998) · doi:10.1046/j.1365-2249.1998.00668.x
[39] Wickham, Biotechnology Progress (Print) 11 (2) pp 164– (1995) · doi:10.1021/bp00032a008
[40] Goldstein, Biophysical Journal 56 (5) pp 955– (1989) · doi:10.1016/S0006-3495(89)82741-9
[41] Burton, Immunological reviews 156 pp 185– (1997) · doi:10.1111/j.1600-065X.1997.tb00968.x
[42] Chun, PNAS 96 (20) pp 10958– (1999) · doi:10.1073/pnas.96.20.10958
[43] Goldstein, Immunology today 17 (2) pp 77– (1996) · doi:10.1016/0167-5699(96)80583-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.