×

Second class particles as microscopic characteristics in totally asymmetric nearest-neighbor \(K\)-exclusion processes. (English) Zbl 0983.60093

The author proves the laws of large numbers for a second class particle in one-dimensional totally asymmetric \(K\)-exclusion processes, under hydrodynamic Euler scaling. The main assumption is that initially the ambient particle configuration converges to a limiting profile. The macroscopic trajectories of the second class of particles are charateristics and shocks of the conversation law of the particle density. The proof uses a variational representation of a second class particle (variational coupling method), to overcome the problem of lack of information about invariant distributions. But the flux function of the conservation law may be neither differentiable nor strictly concave. To give a complete picture, the author also discusses the construction, uniqueness, and other properties of the weak solution that the particle density obeys.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C22 Interacting particle systems in time-dependent statistical mechanics

References:

[1] Donald P. Ballou, Solutions to nonlinear hyperbolic Cauchy problems without convexity conditions, Trans. Amer. Math. Soc. 152 (1970), 441 – 460 (1971). · Zbl 0207.40401
[2] C. M. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation laws, Indiana Univ. Math. J. 26 (1977), no. 6, 1097 – 1119. · Zbl 0377.35051 · doi:10.1512/iumj.1977.26.26088
[3] B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, Exact solution of the totally asymmetric simple exclusion process: shock profiles, J. Statist. Phys. 73 (1993), no. 5-6, 813 – 842. · Zbl 1102.60320 · doi:10.1007/BF01052811
[4] Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. · Zbl 0902.35002
[5] Pablo A. Ferrari, Shock fluctuations in asymmetric simple exclusion, Probab. Theory Related Fields 91 (1992), no. 1, 81 – 101. · Zbl 0744.60117 · doi:10.1007/BF01194491
[6] P. A. Ferrari and L. R. G. Fontes, Shock fluctuations in the asymmetric simple exclusion process, Probab. Theory Related Fields 99 (1994), no. 2, 305 – 319. · Zbl 0801.60094 · doi:10.1007/BF01199027
[7] P. A. Ferrari and L. R. G. Fontes, Current fluctuations for the asymmetric simple exclusion process, Ann. Probab. 22 (1994), no. 2, 820 – 832. · Zbl 0806.60099
[8] P. A. Ferrari, L. R. G. Fontes, and Y. Kohayakawa, Invariant measures for a two-species asymmetric process, J. Statist. Phys. 76 (1994), no. 5-6, 1153 – 1177. · Zbl 0841.60085 · doi:10.1007/BF02187059
[9] P. A. Ferrari and C. Kipnis, Second class particles in the rarefaction fan, Ann. Inst. H. Poincaré Probab. Statist. 31 (1995), no. 1, 143 – 154 (English, with English and French summaries). · Zbl 0813.60095
[10] P. A. Ferrari, C. Kipnis, and E. Saada, Microscopic structure of travelling waves in the asymmetric simple exclusion process, Ann. Probab. 19 (1991), no. 1, 226 – 244. · Zbl 0725.60113
[11] Hitoshi Ishii, Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984), no. 5, 721 – 748. · Zbl 0551.49016 · doi:10.1512/iumj.1984.33.33038
[12] Claude Kipnis and Claudio Landim, Scaling limits of interacting particle systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 320, Springer-Verlag, Berlin, 1999. · Zbl 0927.60002
[13] N. Kruzkov, First order quasilinear equations in several independent variables. Math. USSR Sb. 10 (1970), 217-243.
[14] Peter D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. · Zbl 0268.35062
[15] Thomas M. Liggett, Stochastic interacting systems: contact, voter and exclusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 324, Springer-Verlag, Berlin, 1999. · Zbl 0949.60006
[16] O. A. Oleĭnik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. (2) 26 (1963), 95 – 172. · Zbl 0131.31803
[17] Fraydoun Rezakhanlou, Hydrodynamic limit for attractive particle systems on \?^{\?}, Comm. Math. Phys. 140 (1991), no. 3, 417 – 448. · Zbl 0738.60098
[18] Fraydoun Rezakhanlou, Microscopic structure of shocks in one conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), no. 2, 119 – 153. · Zbl 0836.76046
[19] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. · Zbl 0193.18401
[20] H. Rost, Nonequilibrium behaviour of a many particle process: density profile and local equilibria, Z. Wahrsch. Verw. Gebiete 58 (1981), no. 1, 41 – 53. · Zbl 0451.60097 · doi:10.1007/BF00536194
[21] Timo Seppäläinen, A microscopic model for the Burgers equation and longest increasing subsequences, Electron. J. Probab. 1 (1996), no. 5, approx. 51 pp., issn=1083-6489, review=\MR{1386297}, doi=10.1214/EJP.v1-5,. · Zbl 0891.60093
[22] T. Seppäläinen, Hydrodynamic scaling, convex duality and asymptotic shapes of growth models, Markov Process. Related Fields 4 (1998), no. 1, 1 – 26. · Zbl 0906.60082
[23] T. Seppäläinen, Coupling the totally asymmetric simple exclusion process with a moving interface, Markov Process. Related Fields 4 (1998), no. 4, 593 – 628. I Brazilian School in Probability (Rio de Janeiro, 1997). · Zbl 0922.60094
[24] Timo Seppäläinen, Existence of hydrodynamics for the totally asymmetric simple \?-exclusion process, Ann. Probab. 27 (1999), no. 1, 361 – 415. · Zbl 0947.60088 · doi:10.1214/aop/1022677266
[25] T. Seppäläinen, A variational coupling for a totally asymmetric exclusion process with long jumps but no passing. Hydrodynamic Limits and Related Topics, Eds. S. Feng, A. Lawnicsak and S. Varadhan, Fields Institute Communications, Volume 27, 2000, 117-130. American Mathematical Society. CMP 2001:05
[26] Richard L. Wheeden and Antoni Zygmund, Measure and integral, Marcel Dekker, Inc., New York-Basel, 1977. An introduction to real analysis; Pure and Applied Mathematics, Vol. 43. · Zbl 0362.26004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.