×

A Krein-like formula for singular perturbations of self-adjoint operators and applications. (English) Zbl 0981.47022

Given a selfadjoint operator \(A: D(A)\subset {\mathcal H}\to {\mathcal H}\) and a continuous linear operator \(\tau:D(A)\to {\mathcal X}\) with \(\text{Ran } \tau '\cap{H}'=\{0\}\), \(\mathcal X\) a Banach space, author explicitly constructs a family \(A^\tau_\theta\) of selfadjoint operators such that any \(A^{\tau}_{\theta}\) coincides with the original \(A\) on the kernel of \(\tau\). Such a family is obtained by giving a Krein-like resolvent formula where the role of the deficiency spaces is played by the dual pair \(({\mathcal X},{\mathcal X}')\); the parameter \(\theta\) belongs to the space of symmetric operators from \({\mathcal X}'\) to \({\mathcal X}\).
Considering the situation in which \({\mathcal H}=L^2({\mathbb R}^n)\) and \(\tau\) is the trace (restriction) operator along some null subset, author gives unified approach to the various applications including singular perturbations of the Laplacian supported by regular curves, singular perturbations given by \(d\)-sets and \(d\)-measures, singular perturbations of the d’Alemberian supported by time-like straight lines, singular perturbations given by traces on Malgrange space.

MSC:

47B25 Linear symmetric and selfadjoint operators (unbounded)
47A10 Spectrum, resolvent

References:

[1] Akhiezer, N. I.; Glatzman, I. M., Theory of Linear Operators in Hilbert Spaces (1963), Ungar: Ungar New York
[2] Albeverio, S.; Fenstad, J. R.; Holden, H.; Lindstrøm, T., Ideas and Methods in Mathematical Analysis (1991), Cambridge Univ. Press: Cambridge Univ. Press New York/Cambridge
[3] Albeverio, S.; Fenstad, J. R.; Høegh-Krohn, R.; Karwowski, W.; Lindstrøm, T., Schrödinger operators with potentials supported by null sets, (Albeverio, S.; Fenstad, J. R.; Holden, H.; Lindstrøm, T., Ideas and Methods in Mathematical Analysis (1991), Cambridge Univ. Press: Cambridge Univ. Press New York/Cambridge) · Zbl 0795.35088
[4] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H., Solvable Models in Quantum Mechanics (1988), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York · Zbl 0679.46057
[5] Albeverio, S.; Kurasov, P., Rank one perturbations, approximations, and selfadjoint extensions, J. Func. Anal., 148, 152-169 (1997) · Zbl 0908.47010
[6] Alonso, A.; Simon, B., The Birman-Kreın-Vishik theory of self-adjoint extensions of semibounded operators, J. Operator Theory, 4, 251-270 (1980) · Zbl 0467.47017
[7] M. Bertini, D. Noja, and, A. Posilicano, On the quantization of the Pauli-Fierz model in the ultraviolet limit, in preparation.; M. Bertini, D. Noja, and, A. Posilicano, On the quantization of the Pauli-Fierz model in the ultraviolet limit, in preparation. · Zbl 1111.81152
[8] O. V. Besov, V. P. Il’in, S. M. Nikol’skiı, Integral Representations of Functions and Imbedding Theorems, Winston & Sons, Washington, 1978, (vol, 1, ), 1979, (vol, 2, ).; O. V. Besov, V. P. Il’in, S. M. Nikol’skiı, Integral Representations of Functions and Imbedding Theorems, Winston & Sons, Washington, 1978, (vol, 1, ), 1979, (vol, 2, ). · Zbl 0392.46022
[9] Birman, M. S., On the self-adjoint extensions of positive definite operators, Mat. Sb., 38, 431-450 (1956) · Zbl 0070.12102
[10] Brasche, J. F., Generalized Schrödinger operators, an inverse problem in spectral analysis and the efimov effect, (Albeverio, S.; Fenstad, J. R.; Holden, H.; Lindstrøm, T., Ideas and Methods in Mathematical Analysis (1991), Cambridge Univ. Press: Cambridge Univ. Press New York/Cambridge) · Zbl 0826.47036
[11] Brasche, J. F.; Teta, A., Spectral analysis and scattering theory for Schrödinger operators with an interaction supported by a regular curve, (Albeverio, S.; Fenstad, J. R.; Holden, H.; Lindstrøm, T., Ideas and Methods in Mathematical Analysis (1991), Cambridge Univ. Press: Cambridge Univ. Press New York/Cambridge) · Zbl 0787.35057
[12] Cheremshantsev, S. E., Hamiltonians with zero-range interactions supported by a Brownian path, Ann. Inst. H. Poincaré, 56, 1-25 (1992) · Zbl 0755.47050
[13] Ciesielski, Z.; Taylor, S. J., First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc., 103, 434-450 (1962) · Zbl 0121.13003
[14] Dell’Antonio, G. F.; Figari, R.; Teta, A., Hamiltonians for systems of N particles interacting through point interactions, Ann. Inst. H. Poincaré, 60, 253-290 (1994) · Zbl 0808.35113
[15] Derkach, V. A.; Malamud, M. M., Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal., 95, 1-95 (1991) · Zbl 0748.47004
[16] Derkach, V. A.; Malamud, M. M., The extension theory of Hermitian operators and the moment problem, J. Math. Sciences, 73, 141-242 (1995) · Zbl 0848.47004
[17] Dunford, N.; Schwartz, J. T., Linear Operators. Linear Operators, Spectral Theory, II (1963), Interscience: Interscience New York/London · Zbl 0128.34803
[18] Gesztesy, F.; Makarov, K. A.; Tsekanovskii, E., An addendum to Krein’s formula, J. Math. Anal. Appl., 222, 594-606 (1998) · Zbl 0922.47006
[19] Hörmander, L., Linear Partial Differential Operators (1963), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York · Zbl 0171.06802
[20] Jonsson, A.; Wallin, H., A Whitney extension theorem in \(L^p\) and Besov spaces, Ann. Inst. Fourier, 28, 139-192 (1978) · Zbl 0369.46031
[21] Jonsson, A.; Wallin, H., Function spaces on subsets of \(\textbf{R}^n \), Math. Reports, 2, 1-221 (1984) · Zbl 0875.46003
[22] Karwowski, W.; Koshmanenko, V.; Ôta, S., Schrödinger operators perturbed by operators related to null sets, Positivity, 2, 77-99 (1998) · Zbl 0916.47001
[23] Kato, T., Perturbation Theory for Linear Operators (1980), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York · Zbl 0435.47001
[24] Kisilev, A.; Simon, B., Rank One Perturbations with Infinitesimal Coupling, J. Func. Anal., 130, 345-356 (1995) · Zbl 0823.47015
[25] Kreın, M. G., On Hermitian operators with deficiency indices one, Dokl. Akad. Nauk SSSR, 43, 339-342 (1944)
[26] Kreın, M. G., Resolvents of Hermitian operators with defect index \((m, m)\), Dokl. Akad. Nauk SSSR, 52, 657-660 (1946)
[27] Kreın, M. G., The theory of self-adjoint extensions of half-bounded Hermitean operators and their applications, Mat. Sb., 20, 431-459 (1947)
[28] Malgrange, B., Sur une Classe d’Operateurs Différentiels Hypoelliptiques, Bull. Soc. Math. France, 85, 283-306 (1957) · Zbl 0082.09303
[29] Maz’ya, V.; Khavin, V., Nonlinear potential theory, Russ. Math. Surv., 27, 71-148 (1972) · Zbl 0269.31004
[30] Minlos, R. A.; Faddeev, L. D., On the point interaction for three-particle system in quantum mechanics, Soviet Phys. Dokl., 6, 1072-1074 (1962)
[31] von Neumann, J., Allgemeine Eigenwerttheorie Hermitscher Funktionaloperatoren, Math. Ann., 102, 49-131 (1929-30) · JFM 55.0824.02
[32] Noja, D.; Posilicano, A., The wave equation with one point interaction and the (linearized) classical electrodynamics of a point particle, Ann. Inst. H. Poincaré, 68, 351-377 (1998) · Zbl 0923.35172
[33] Noja, D.; Posilicano, A., On the point limit of the Pauli-Fierz model, Ann. Inst. H. Poincaré, 71, 425-457 (1999) · Zbl 0958.78007
[34] Noja, D.; Posilicano, A., Delta interactions and electrodynamics of point particles, Stochastic Processes, Physics and Geometry: New Interplays. A Volume in Honor of Sergio Albeverio (2000), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 1040.78005
[35] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. Vol. II: Fourier Analysis, Self-Adjointness (1975), Academic Press: Academic Press New York/San Francisco/London · Zbl 0308.47002
[36] Saakjan, Sh. N., On the theory of resolvents of a symmetric operator with infinite deficiency indices, Dokl. Akad. Nauk Arm. SSR, 44, 193-198 (1965) · Zbl 0163.37804
[37] Shondin, Yu. G., On the semiboundedness of \(δ\)-perturbations of the Laplacian supported by curves with angle points, Theor. Math. Phys., 105, 1189-1200 (1995) · Zbl 0872.47007
[38] Teta, A., Quadratic forms for singular perturbations of the Laplacian, Publ. RIMS Kyoto Univ., 26, 803-817 (1990) · Zbl 0735.35048
[39] Triebel, H., Fractals and Spectra (1997), Birkhäuser: Birkhäuser Basel/Boston/Berlin · Zbl 0898.46030
[40] Vishik, M., On general boundary conditions for elliptic differential equations, Amer. Math. Soc. Trans., 2, 107-172 (1963) · Zbl 0131.32301
[41] Volevich, L. R.; Paneyakh, B. P., Certain spaces of generalized functions and embeddings theorems, Russ. Math. Surv., 20, 1-73 (1965) · Zbl 0135.16501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.