×

A length inequality for one-dimensional local rings. (English) Zbl 0981.13013

Let \( (R,m) \) be a one-dimensional local, reduced, noetherian ring. Assume that \(R\) is excellent with infinite residue field. Let \({\overline R}\) be the normalization of \(R\), \(C\) the conductor and \(t \) the type of \(R\). Consider the function \(\lambda^*(R)= t \lambda(R/C)-\lambda({\overline R}/R)\), where \(\lambda(\cdot)\) is the length function. Several authors have studied rings for which \(\lambda^*(R)=0,1 \) or \(\lambda^*(R)\leq t \). In this paper the authors consider the case \(\lambda^*(R)= t\) and describe possible values of \(\lambda(R/C+xR)\) and \(t\), where \(x\) is a minimal reduction of \(m\).

MSC:

13H05 Regular local rings
Full Text: DOI

References:

[1] DOI: 10.1016/0021-8693(92)90118-6 · Zbl 0773.13006 · doi:10.1016/0021-8693(92)90118-6
[2] DOI: 10.1216/rmjm/1181071860 · Zbl 0926.13004 · doi:10.1216/rmjm/1181071860
[3] DOI: 10.1006/jabr.1994.1288 · Zbl 0810.13025 · doi:10.1006/jabr.1994.1288
[4] Fröberg R., semigroup rings and analytically irreducible rings (1986)
[5] DOI: 10.1007/BF02573091 · Zbl 0614.10046 · doi:10.1007/BF02573091
[6] DOI: 10.1090/S0002-9947-1952-0049591-8 · doi:10.1090/S0002-9947-1952-0049591-8
[7] DOI: 10.1007/BFb0059377 · Zbl 0231.13009 · doi:10.1007/BFb0059377
[8] Matsumura H., Commutative Ring Theory (1986) · Zbl 0603.13001
[9] DOI: 10.1017/S0305004100029194 · doi:10.1017/S0305004100029194
[10] Sally J., J. Math 17 pp 19– (1977)
[11] Sally J., Comp. Math 40 pp 167– (1980)
[12] DOI: 10.2307/2320864 · Zbl 0387.10009 · doi:10.2307/2320864
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.