×

A purity theorem for the Witt group. (English) Zbl 0980.11025

Let \(X\) be an integral scheme and let \(K=k(X)\) be its field of rational functions. An element \(\xi\) in the Witt ring \(W(K)\) is said to be unramified if it belongs to the image of the canonical map \(W({\mathcal O}_{X,x})\rightarrow W(K)\) for every height-one point \(x\in X.\) It is said that purity holds for \(X\) if every unramified element of \(W(K)\) belongs to the image of the canonical map \(W(X)\rightarrow W(K).\) The main result of the paper says that purity holds for \(X\)= Spec\((A)\), where \(A\) is a regular local ring containing a field of characteristic not 2. So far purity has been known to hold for regular integral Noetherian schemes of dimension at most 2 [J.-P. Colliot-Thélène and J.-J. Sansuc, Math. Ann. 244, 105-134 (1979; Zbl 0418.14016)] and for regular integral Noetherian affine schemes of dimension 3 [M. Ojanguren, R. Parimala, R. Sridharan and V. Suresh, Proc. Lond. Math. Soc. (2) 59, 521-540 (1999; Zbl 0930.19003)]. In fact the authors prove the purity for essentially smooth algebras using the trace formula for the Witt groups of rings and then apply approximation of regular local rings by those algebras. Using the methods, the authors obtain a few other interesting results. For example, they prove injectivity of the natural homomorphism \(W(A_f)\rightarrow W(K)\), where \(f\) is a regular parameter of \(A\).

MSC:

11E81 Algebraic theory of quadratic forms; Witt groups and rings
13H05 Regular local rings
19G12 Witt groups of rings

References:

[1] A. ALTMAN and S. KLEIMAN , Introduction to Grothendieck duality theory , Lect. Notes in Math., Vol. 146, 1970 , Springer. MR 43 #224 | Zbl 0215.37201 · Zbl 0215.37201
[2] M. ANDRÉ , Cinq exposés sur la désingularisation , Manuscrit de l’École Polytechnique Fédérale de Lausanne, 1991 .
[3] J.-L. COLLIOT-THÉLÈNE et J.-J. SANSUC , Fibrés quadratiques et composantes connexes réelles , Math. Ann., Vol. 244, 1979 , pp. 105-134. MR 81c:14010 | Zbl 0418.14016 · Zbl 0418.14016 · doi:10.1007/BF01420486
[4] D. EISENBUD , Commutative Algebra, Graduate Texts in Mathematics, Vol. 150, Springer, 1994 . Zbl 0819.13001 · Zbl 0819.13001
[5] L. EULER , Theorema arithmeticum eiusque demonstratio , Leonhardi Euleri Opera Omnia, series I, opera mathematica, volumen VI, Teubner, 1921 . Article | JFM 48.0007.01 · JFM 48.0007.01
[6] F. FERNANDEZ-CARMENA , On the injectivity of the map of the Witt group of a scheme into the Witt group of its quotient field , Math. Ann., Vol. 277, 1987 , pp. 453-481. MR 88h:11027 | Zbl 0641.14003 · Zbl 0641.14003 · doi:10.1007/BF01458326
[7] A. GROTHENDIECK , EGA IV , 4ème partie, Publ. Math. IHES, Vol. 32, 1967 . Numdam | Zbl 0153.22301 · Zbl 0153.22301
[8] P. JAWORSKI , Witt rings of fields of quotients of two-dimensional regular local rings , Math. Z., Vol. 211, 1992 , pp. 533-546. Article | MR 93i:11049 | Zbl 0764.11023 · Zbl 0764.11023 · doi:10.1007/BF02571444
[9] M. KNEBUSCH , Symmetric and bilinear forms over algebraic varieties , Conference on quadratic forms, Queen’s papers in pure and applied mathematics, Vol. 46, 1977 , Kingston, Ontario. MR 58 #16506 | Zbl 0408.15019 · Zbl 0408.15019
[10] M.-A. KNUS , Quadratic and Hermitian Forms over Rings , Grundlehren der Math. Wissenschaften, Vol. 294, Springer, 1991 . MR 92i:11039 | Zbl 0756.11008 · Zbl 0756.11008
[11] D. POPESCU , General Néron desingularization , Nagoya Math. J., Vol. 100, 1985 , pp. 97-126. Article | MR 87f:13019 | Zbl 0561.14008 · Zbl 0561.14008
[12] D. POPESCU , General Néron desingularization and approximation , Nagoya Math. J., Vol. 104, 1986 , pp. 85-115. Article | MR 88a:14007 | Zbl 0592.14014 · Zbl 0592.14014
[13] D. POPESCU , Letter to the Editor ; General Néron desingularization and approximation , Nagoya Math. J., Vol. 118, 1990 , pp. 45-53. Article | MR 91e:14003 | Zbl 0685.14009 · Zbl 0685.14009
[14] M. OJANGUREN , Quadratic forms over regular rings , J. Indian Math. Soc., Vol. 44, 1980 , pp. 109-116. MR 85h:11017 | Zbl 0621.10017 · Zbl 0621.10017
[15] M. OJANGUREN , R. PARIMALA , R. SRIDHARAN and V. SURESH , A purity theorem for the Witt groups of 3-dimensional regular local rings , Proc. London Math. Soc., to appear. · Zbl 0930.19003
[16] D. QUILLEN , Higher algebraic K-theory I , Algebraic K-Theory I, Lect. Notes in Math., Vol. 341, Springer, 1973 . MR 49 #2895 | Zbl 0292.18004 · Zbl 0292.18004
[17] J-P. SERRE , Corps locaux , Hermann, Paris, 1962 . MR 27 #133 | Zbl 0137.02601 · Zbl 0137.02601
[18] G. SCHEJA und U. STORCH , Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte , Manuscripta Math., Vol. 19, 1976 , pp. 75-104. MR 53 #10822 | Zbl 0329.13011 · Zbl 0329.13011 · doi:10.1007/BF01172339
[19] R.G. SWAN , Néron-Popescu desingularization , Preprint. · Zbl 0954.13003
[20] V. VOEVODSKY , Homology of schemes II , Preprint. · Zbl 0871.14016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.