×

Flag varieties and interpretations of Young tableau algorithms. (English) Zbl 0979.14025

From the introduction: The Schensted algorithm, which defines a bijective correspondence between permutations and pairs of (standard) Young tableaux, and the Schützenberger (or evacuation) algorithm, which defines a shape-preserving involution of the set of Young tableaux, can both be described using doubly indexed families of partitions that satisfy certain local rules, as described by H. A. A. Van Leeuwen [Electrons J. Comb. 3, No. 2, 391-422 (1996; Zbl 0852.05080)]. In this paper we show how both correspondences occur in relation to questions concerning varieties of flags stabilized by a fixed nilpotent transformation \(\eta\). The mentioned doubly indexed families of partitions arise very naturally in this context, and they provide detailed information concerning the internal steps of the algorithms, rather than just about the correspondences defined by them. As a consequence, the study of the Schützenberger algorithm also leads to an interpretation of jeu de taquin and of the Littlewood-Richardson coefficients. The connections between geometry and combinatorics presented here include and extend results due to R. Steinberg [J. Algebra 113, No. 2, 523-528 (1988; Zbl 0653.20039) and Invent. Math. 36, 209-224 (1976; Zbl 0352.20035)] and W. H. Hesselink [Compos. Math. 55, 89-133 (1985; Zbl 0579.15011)].
The basic fact underlying these interpretations is that the irreducible components of the variety \({\mathcal F}_\eta\) of \(\eta\)-stable complete flags is parametrized in a natural way by the set of standard Young tableaux of shape equal to the Jordan type \(J(\eta)\) of \(\eta\). In fact there are two dual parametrizations, and we show that the transition between them is given by the Schützenberger involution. Taking a projection on varieties of incomplete flags by forgetting the parts of flags below a certain dimension, we obtain from this an interpretation of jeu de taquin (operating on skew standard tableaux) and a bijection between Littlewood-Richardson tableaux and irreducible components of a variety of \(\eta\)-stable subspaces of fixed type and cotype.
The other interpretations involve the Robinson-Schensted algorithm and relative positions of flags. We give a derivation of Steinberg’s result that the relative position of two generically chosen flags in given irreducible components of \({\mathcal F}_\eta\) is the permutation related by the Robinson-Schensted correspondence to the pair of the tableaux parametrizing those components.

MSC:

14M15 Grassmannians, Schubert varieties, flag manifolds
05E10 Combinatorial aspects of representation theory

References:

[1] Fomin, S. V., Generalised Robinson-Schensted-Knuth correspondence, J. Soviet Math., 41, 979-991 (1988) · Zbl 0698.05003
[2] Haiman, M. D., Dual equivalence with applications, including a conjecture of Proctor, Discrete Math., 99, 79-113 (1992) · Zbl 0760.05093
[3] Hesselink, W. H., A classification of the nilpotent triangular matrices, Compositio Math., 55, 89-133 (1985) · Zbl 0579.15011
[4] Humphreys, J. E., Linear Algebraic Groups. Linear Algebraic Groups, Graduate Texts in Mathematics, 21 (1975), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0325.20039
[5] Knuth, D. E., Permutations, matrices and generalized Young tableaux, Pacific J. Math., 34, 709-727 (1970) · Zbl 0199.31901
[6] Knuth, D. E., The Art of Computer Programming, Vol. III, Sorting and Searching (1975), Addison-Wesley: Addison-Wesley Reading, p. 48-72
[7] M. A. A. van Leeuwen, A Robinson-Schensted Algorithm in the Geometry of Flags for Classical Groups, Thesis, Rijksuniversiteit Utrecht, the Netherlands, 1989.; M. A. A. van Leeuwen, A Robinson-Schensted Algorithm in the Geometry of Flags for Classical Groups, Thesis, Rijksuniversiteit Utrecht, the Netherlands, 1989.
[8] van Leeuwen, M. A.A., The Robinson-Schensted and Schützenberger algorithms and interpretations, (Cohen, A. M., Computational Aspects of Lie Group Representations and Related Topics. Computational Aspects of Lie Group Representations and Related Topics, CWI Tract, 84 (1991), Stichting Mathematisch Centrum: Stichting Mathematisch Centrum Amsterdam) · Zbl 0754.05074
[9] van Leeuwen, M. A.A., The Robinson-Schensted and Schützenberger algorithms, an elementary approach, Electron. J. Combin., 3, R15 (1996) · Zbl 0852.05080
[10] van Leeuwen, M. A.A., Tableau algorithms defined naturally for pictures, Discrete Math., 157, 321-362 (1996) · Zbl 0863.05080
[11] Macdonald, I. G., Symmetric Functions and Hall Polynomials. Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs (1979), Clarendon: Clarendon Oxford · Zbl 0487.20007
[12] Robinson, G.de B., On the representations of the symmetric group, Amer. J. Math., 60, 745-760 (1938) · Zbl 0019.25102
[13] Schensted, C., Longest increasing and decreasing subsequences, Canad. J. Math., 13, 179-191 (1961) · Zbl 0097.25202
[14] Schützenberger, M. P., Quelques remarques sur une construction de Schensted, Math. Scand., 12, 117-128 (1963) · Zbl 0216.30202
[15] Schützenberger, M. P., La correspondance de Robinson, (Foata, D., Combinatoire et Représentation du Groupe Symétrique. Combinatoire et Représentation du Groupe Symétrique, Lecture Notes in Mathematics, 579 (1976), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0398.05011
[16] Spaltenstein, N., The fixed point set of a unipotent transformation on the flag manifold, Proc. Konink. Nederl. Akad. Wetensch. Ser. A, 79, 452-458 (1976) · Zbl 0343.20029
[17] Spaltenstein, N., Classes Unipotentes et Sous-groupes de Borel. Classes Unipotentes et Sous-groupes de Borel, Lecture Notes in Mathematics, 946 (1982), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0486.20025
[18] Springer, T. A., A construction of representations of Weyl groups, Invent. Math., 44, 279-293 (1978) · Zbl 0376.17002
[19] Springer, T. A., Geometric questions arising in the study of unipotent elements, The Santa Cruz conference on Finite Groups. The Santa Cruz conference on Finite Groups, Proc. Symp. Pure Math., 37 (1980) · Zbl 0469.20021
[20] Springer, T. A., Conjugacy classes in Algebraic Groups, Group Theory, Beijing. Group Theory, Beijing, Lecture Notes in Mathematics, 1185 (1984), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0624.20029
[21] Srinivasan, B., A geometrical approach to the Littlewood-Richardson rule, J. Algebra, 187, 227-235 (1997) · Zbl 0882.20027
[22] Steinberg, R., On the desingularisation of the unipotent variety, Inventiones Math., 36, 209-224 (1976) · Zbl 0352.20035
[23] Steinberg, R., An occurrence of the Robinson-Schensted correspondence, J. Algebra, 113, 523-528 (1988) · Zbl 0653.20039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.