×

Gauge theory on a quantum phase space. (English) Zbl 0977.81065

Summary: In this letter we present a operator formulation of gauge theories in a quantum phase space which is specified by an operator algebra. For simplicity we work with the Heisenberg algebra. We introduce the notion of the derivative (transport) and Wilson line (parallel transport) which enables us to construct a gauge theory in a simple way. We illustrate the formulation by a discussion of the Higgs mechanism and comment on the large \(N\) masterfield.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T05 Axiomatic quantum field theory; operator algebras

References:

[1] Douglas, M., Two lectures on D-geometry and non-commutative geometry · Zbl 1014.81505
[2] Connes, A.; Douglas, M.; Schwarz, A., Non-commutative geometry and matrix theory: compactification on tori, JHEP, 9802, 003 (1998) · Zbl 1018.81052
[3] Douglas, M. R.; Hull, C., D-branes and the non-commutative torus, JHEP, 9802, 008 (1998) · Zbl 0957.81017
[4] Ardalan, F.; Arfaei, H.; Sheikh-Jabbari, M. M., Non-commutative geometry from strings and branes · Zbl 0965.81124
[5] Cheung, Y.; Krogh, M., Non-commutative geometry from \(D_0\) branes in a background B-field, Nucl. Phys. B, 528, 185 (1999) · Zbl 0951.81091
[6] Garcia-Compean, H., On the deformation quantization description of matrix compactifications, Nucl. Phys. B, 541, 651 (1999) · Zbl 0942.81066
[7] Chu, C.; Ho, P., Non-commutative open string and D-brane, Nucl. Phys. B, 550, 151 (1999) · Zbl 0947.81136
[8] Schomerus, V., D-branes and deformation quantization · Zbl 0961.81066
[9] Chamseddine, A.; Froehlich, J., Some elements of Connes’ non-commutative geometry and space-time geometry
[10] Witten, E., On background independent open string field theory, Phys. Rev. D, 46, 5467 (1992)
[11] Banks, T.; Fischler, W.; Shenker, S. H.; Susskind, L., M-theory as a matrix model: a conjecture, Phys. Rev. D, 55, 5112 (1997)
[12] de Wit, B.; Hoppe, J.; Nicolai, H., On the quantum mechanics of supermembranes, Nucl. Phys. B, 305, 545 (1988)
[13] Seiberg, N.; Witten, E., Non-commutative geometry and string theory, JHEP, 9909, 032 (1999) · Zbl 0957.81085
[14] Alekseev, A. Y.; Recknagel, A.; Schomerus, V., Non-commutative world-volume geometries: branes on SU(2) and fuzzy spheres, JHEP, 9909, 023 (1999) · Zbl 0957.81084
[15] Polchinski, J.; Strassler, M. J., The string dual of a confining four-dimensional gauge theory
[16] S. Trivedi, S. Vaidya, submitted for publication; S. Trivedi, S. Vaidya, submitted for publication
[17] Dhar, A.; Mandal, G.; Wadia, S. R., A time dependent classical solution of \(c=1\) string field theory and non-perturbative effects, Int. J. Mod. Phys. A, 8, 3811 (1993) · Zbl 0984.81527
[18] Jevicki, A.; Sakita, B., The quantum collective field method and its application to the planar limit, Nucl. Phys. B, 165, 511 (1980)
[19] Dhar, A.; Mandal, G.; Wadia, S. R., String field theory of two-dimensional QCD: a realization of W-infinity algebra, Phys. Lett. B, 329, 15 (1994)
[20] Yoneya, T., String theory and the space-time uncertainty principle · Zbl 1376.81064
[21] Minwalla, S.; Van Raamsdonk, M.; Seiberg, N., Noncommutative perturbative dynamics · Zbl 0959.81108
[22] Nekrasov, N.; Schwarz, A., Instantons on non-commutative \(R^4\), and (2,0) superconformal six-dimensional theory, Commun. Math. Phys., 198, 689 (1998) · Zbl 0923.58062
[23] Seiberg, N.; Witten, E., The D1/D5 system and singular CFT, JHEP, 9904, 017 (1999) · Zbl 0953.81076
[24] Dhar, A.; Mandal, G.; Wadia, S. R.; Yogendran, K. P., D1/D5 system with B-field, noncommutative geometry and the CFT of the Higgs branch · Zbl 1056.81545
[25] Kogan, I., Area preserving diffeomorphisms, \(W_∞\) and \(U_q\)(sl(2)) in Chern-Simons theory and quantum Hall system, Int. J. Mod. Phys. A, 9, 3887 (1994) · Zbl 0985.81812
[26] Iso, S.; Karabali, D.; Sakita, B., Fermions in the lowest Landau level: bosonization, \(W_∞\) algebra, droplets, chiral boson, Phys. Lett. B, 296, 143 (1992)
[27] Sakita, B., \(W_∞\) gauge transformations and the electromagnetic interactions of electrons in the lowest Landau level, Phys. Lett. B, 296, 143 (1992)
[28] Bigatti, D.; Susskind, L., Magnetic fields, branes and noncommutative geometry
[29] Perolomov, A. M., Generalized Coherent States and Their Applications (1986), Springer · Zbl 0605.22013
[30] Ishibashi, N.; Iso, S.; Kawai, H.; Kitazawa, Y., Wilson loops in noncommutative Yang-Mills, Nucl. Phys. B, 573, 573 (2000) · Zbl 0947.81137
[31] Ambjorn, J.; Makeenko, Y. M.; Nishimura, J.; Szabo, R. J., Nonperturbative dynamics of noncommutative gauge theory, Phys. Lett. B, 480, 399 (2000) · Zbl 0990.81130
[32] Gopakumar, R.; Minwalla, S.; Strominger, A., Noncommutative solitons · Zbl 1055.81073
[33] Dasgupta, K.; Mukhi, S.; Rajesh, G., Noncommutative tachyons · Zbl 0989.81605
[34] Harvey, J.; Kraus, P.; Larsen, F.; Martinec, E., D-branes and strings as non-commutative solitons · Zbl 0965.81118
[35] R. Gopakumar, private communication; R. Gopakumar, private communication
[36] Wadia, S. R., Dyson-Schwinger equations approach to the large \(N\) limit: model systems and string representation of Yang-Mills theory, Phys. Rev. D, 24, 970 (1981)
[37] Gopakumar, R.; Gross, D. J., Mastering the master field, Nucl. Phys. B, 451, 379 (1995) · Zbl 0925.46024
[38] Ambjorn, J.; Makeenko, Y. M.; Nishimura, J.; Szabo, R. J., Lattice gauge fields and discrete noncommutative Yang-Mills theory · Zbl 0990.81130
[39] Gross, D. J.; Nekrasov, N., Monopoles and strings in non-commutative gauge theory · Zbl 0965.81120
[40] Witten, E., Noncommutative tachyons and string field theory
[41] Ishibashi, N.; Kawai, H.; Kitazawa, Y.; Tsuchiya, A., A large-\(N\) reduced model as superstring, Nucl. Phys. B, 498, 467 (1997) · Zbl 0979.81567
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.