×

Simple finite element method in vorticity formulation for incompressible flows. (English) Zbl 0977.76048

Summary: A finite element method is introduced for two- and three-dimensional viscous incompressible flows using the vorticity formulation. This method relies on recasting the traditional finite element method in the spirit of high-order accurate finite difference methods. Optimal accuracy of arbitrary order can be achieved using standard finite element or spectral elements. The method is convectively stable, and is particularly suited for moderate to high Reynolds number flows.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D17 Viscous vortex flows
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] E. Barragy and G.F. Carey, Stream function vorticity solution using high-\(p\) element-by-element techniques, Commun. in Applied Numer. Methods, 9 (1993) 387-395. · Zbl 0777.76048
[2] K. E. Barrett, A variational principle for the stream function-vorticity formulation of the Navier-Stokes equations incorporating no-slip conditions, J. Computational Phys. 26 (1978), no. 2, 153 – 161. · Zbl 0373.76027
[3] A. Bendali, J. M. Domínguez, and S. Gallic, A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three-dimensional domains, J. Math. Anal. Appl. 107 (1985), no. 2, 537 – 560. · Zbl 0591.35053 · doi:10.1016/0022-247X(85)90330-0
[4] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[5] A. Campion-Renson and M. J. Crochet, On the stream function-vorticity finite element solutions of Navier-Stokes equations, Int. J. Num. Meth. Engng. 12 (1978) 1809-1818. · Zbl 0394.76032
[6] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[7] P. G. Ciarlet and P.-A. Raviart, A mixed finite element method for the biharmonic equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 125 – 145. Publication No. 33. · Zbl 0337.65058
[8] Fadi El Dabaghi and Olivier Pironneau, Stream vectors in three-dimensional aerodynamics, Numer. Math. 48 (1986), no. 5, 561 – 589. · Zbl 0625.76009 · doi:10.1007/BF01389451
[9] Weinan E and Jian-Guo Liu, Vorticity boundary condition and related issues for finite difference schemes, J. Comput. Phys. 124 (1996), no. 2, 368 – 382. · Zbl 0847.76050 · doi:10.1006/jcph.1996.0066
[10] Weinan E and Jian-Guo Liu, Essentially compact schemes for unsteady viscous incompressible flows, J. Comput. Phys. 126 (1996), no. 1, 122 – 138. · Zbl 0853.76045 · doi:10.1006/jcph.1996.0125
[11] Weinan E and J.-G. Liu, Finite difference methods in vorticity-vector potential formulation on 3D non-staggered grids, J. Comput. Phys., 138 (1997) 57-82. · Zbl 0901.76046
[12] R. S. Falk and J. E. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér. 14 (1980), no. 3, 249 – 277 (English, with French summary). · Zbl 0467.65062
[13] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. · Zbl 0585.65077
[14] P. M. Gresho, Incompressible fluid dynamics: some fundamental formulation issues, Annual review of fluid mechanics, Vol. 23, Annual Reviews, Palo Alto, CA, 1991, pp. 413 – 453. · Zbl 0717.76006
[15] P. M. Gresho, Some interesting issues in incompressible fluid dynamics, both in the continuum and in numerical simulation, Advances in applied mechanics, Vol. 28, Adv. Appl. Mech., vol. 28, Academic Press, Boston, MA, 1992, pp. 45 – 140. · Zbl 0741.76011 · doi:10.1016/S0065-2156(08)70154-6
[16] Max D. Gunzburger, Finite element methods for viscous incompressible flows, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1989. A guide to theory, practice, and algorithms. · Zbl 0697.76031
[17] Claes Johnson and Vidar Thomée, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér. 15 (1981), no. 1, 41 – 78 (English, with French summary). · Zbl 0476.65074
[18] M. Ikegawa, A new finite element technique for the analysis of steady viscous flow problems, Int. J. Num. Meth. Engng. 14 (1979) 103-113. · Zbl 0394.76040
[19] J.-G. Liu and C.-W. Shu, A high order discontinuous Galerkin method for incompressible flows, J. Comput. Phys., (to appear).
[20] J.-G. Liu and J. Xu, An efficient finite element method for viscous incompressible flows, in preparation.
[21] S.A. Orszag and M. Israeli, Numerical simulation of viscous incompressible flows, Ann. Rev. Fluid Mech., 6 (1974), 281-318. · Zbl 0295.76016
[22] Olivier Pironneau, Finite element methods for fluids, John Wiley & Sons, Ltd., Chichester; Masson, Paris, 1989. Translated from the French. · Zbl 0748.76003
[23] L. Quartapelle, Numerical solution of the incompressible Navier-Stokes equations, International Series of Numerical Mathematics, vol. 113, Birkhäuser Verlag, Basel, 1993. · Zbl 0784.76020
[24] R. Schulz, A mixed method for fourth order problems using linear elements, R.A.I.R.O. Anal. Numer. 12 (1978) 85-90.
[25] W.N.R. Stevens, Finite element, stream function-vorticity solution of steady laminar natural convection, Int. J. Num. Meth. Fluids 2 (1982) 349-366. · Zbl 0497.76078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.