×

Conormal geometry of maximal minors. (English) Zbl 0974.13010

Let \(A\) be a Noetherian domain, \(N\) a finite torsion-free \(A\)-module and \(M\) a proper submodule such that \(\text{rank }M=\text{rank }N\). The authors consider a graded domain \(S=A[N]\) where this notation just means that \(A_1=N\) generates \(S\). Moreover, let \(A[M]\) be the subalgebra of \(S\) generated by \(M\), and let \(W\) be the subset of those \({\mathfrak p}\in\text{Spec}(A)\) for which \(A[N]_{\mathfrak p}\) is not a finite \(A[M]_{\mathfrak p}\)-module. Finally, \(E\) is the preimage of \(W\) in \(C=\text{Proj}(A[M])\) and \(r=\dim C\).
The main result is that \(\dim E=r-1\) if
(a) \(N\) is free and \(A[N]\) the symmetric algebra of \(N\), or
(b) \(W\) is non-empty and \(A\) is universally catenary.
Furthermore \(E\) is equidimensional if (a) holds and \(A\) is universally catenary.
As a consequence the authors derive (a generalized version of) the Eagon-Northcott bound for heights for ideals of maximal minors and a generalization of Böger’s criterion for the integral dependence of ideals. A further application is made for the geometry of the dual variety of a projective variety.

MSC:

13C15 Dimension theory, depth, related commutative rings (catenary, etc.)
13H15 Multiplicity theory and related topics
13A02 Graded rings
13G05 Integral domains

References:

[1] Böger, E., Verallgemeinerung eines Multiplizitätensatzes von D. Rees, J. Algebra, 12, 207-215 (1969) · Zbl 0179.06301
[2] Bruns, W.; Herzog, J., Cohen-Macaulay rings. Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39 (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0788.13005
[3] Buchsbaum, D. A.; Rim, D. S., A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc., 111, 197-224 (1963) · Zbl 0131.27802
[4] Bruns, W.; Vetter, U., Determinantal Rings. Determinantal Rings, Springer Lecture Notes in Math, 1327 (1988) · Zbl 0673.13006
[5] Gaffney, T.; Massey, D., Trends in equisingularity theory, (Bruce, W.; Mond, D., The Proceedings of the 1996 Liverpool Conference in Honor of CTC Wall, Singularities Volume (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0966.14010
[7] Kirby, D.; Rees, D., Multiplicities in graded rings I: The general theory, (Heinzer, W. J.; Huneke, C. L.; Sally, J. D., Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra, Proceedings, Mount Holyoke College (USA) (1992). Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra, Proceedings, Mount Holyoke College (USA) (1992), Contemp. Math., 159 (1994)), 209-267 · Zbl 0805.13001
[8] Kleiman, S. L., The enumerative theory of singularities, (Holm, P., Real and Complex Singularities, Proceedings, Oslo 1976 (1977), Sijthoff & Noordhoff: Sijthoff & Noordhoff Rockville), 297-396 · Zbl 0451.14020
[9] Kleiman, S. L., Tangency and duality, (Carrell, J.; Geramita, A. V.; Russell, P., Proceedings of the 1984 Vancouver Conference in Algebraic Geometry. Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conf. Proc., 6 (1986), AMS), 163-226 · Zbl 0601.14046
[10] Kleiman, S. L., A generalized Teissier-Plücker formula, (Ciliberto, C.; Livorni, L.; Sommese, A., Classification of Algebraic Varieties. Classification of Algebraic Varieties, Contemp. Math., 162 (1994)), 249-260 · Zbl 0820.14039
[11] Kleiman, S. L., Equisingularity, multiplicity, and dependence, (Van Oystaeyen, F., Commutative algebra and algebraic geometry, Proceedings of the Ferrara meeting in honor of Mario Fiorentini. Commutative algebra and algebraic geometry, Proceedings of the Ferrara meeting in honor of Mario Fiorentini, Lecture notes in Pure and Applied Math., 206 (1991), Mercel Dekker), 211-225 · Zbl 0939.32026
[12] Kleiman, S. L.; Landolfi, J., Geometry and deformations of special Schubert varieties, Comp. Math., 23, 407-434 (1971) · Zbl 0238.14006
[13] Kleiman, S.; Thorup, A., A geometric theory of the Buchsbaum-Rim multiplicity, J. Algebra, 167, 168-231 (1994) · Zbl 0815.13012
[14] Looijenga, E. J.N., Isolated Singular Points on Complete Intersections. Isolated Singular Points on Complete Intersections, London Mathematical Society Lecture Note Series, 77 (1984), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0552.14002
[16] Matsumura, H., Commutative Algebra (1970), Benjamin: Benjamin New York · Zbl 0211.06501
[17] Matsumura, H., Commutative Ring Theory. Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8 (1990), Cambridge Univ. Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.