×

Selection experiments in the Penna model for biological aging. (English) Zbl 0970.92016

Summary: We consider the Penna model for biological aging to investigate correlations between early fertility and late life survival rates in populations at equilibrium. We consider inherited initial reproduction ages together with a reproduction cost translated in a probability that mother and offspring die at birth, depending on the mother age. For convenient sets of parameters, the equilibrated populations present genetic variability in what regards both genetically programmed death age and initial reproduction age.
In the asexual Penna model, a negative correlation between early life fertility and late life survival rates naturally emerges in the stationary solutions. In the sexual Penna model, selection experiments are performed where individuals are sorted by initial reproduction age from the equilibrated populations and the separated populations are evolved independently. After a transient, a negative correlation between early fertility and late age survival rates also emerges in the sense that populations that start reproducing earlier present smaller average genetically programmed death age. These effects appear due to the age structure of populations in the steady state solution of the evolution equations. We claim that the same demographic effects may be playing an important role in selection experiments in the laboratory.

MSC:

92D15 Problems related to evolution
Full Text: DOI

References:

[1] DOI: 10.1016/S0531-5565(99)00042-X · doi:10.1016/S0531-5565(99)00042-X
[2] DOI: 10.1146/annurev.ge.29.120195.003005 · doi:10.1146/annurev.ge.29.120195.003005
[3] Rose M. R., Genetics 97 pp 173– (1981)
[4] DOI: 10.1038/hdy.1985.66 · doi:10.1038/hdy.1985.66
[5] DOI: 10.2307/2408434 · doi:10.2307/2408434
[6] DOI: 10.2307/2409806 · doi:10.2307/2409806
[7] DOI: 10.1007/BF01065984 · doi:10.1007/BF01065984
[8] DOI: 10.1038/367064a0 · doi:10.1038/367064a0
[9] Hutchinson E. W., Genetics 127 pp 719– (1991)
[10] Promislov D. L., Genetics 143 pp 839– (1996)
[11] Tatar M., Genetics 143 pp 849– (1996)
[12] Pletcher S. D., Genetics 148 pp 287– (1998)
[13] DOI: 10.1007/BF02180147 · Zbl 1104.92333 · doi:10.1007/BF02180147
[14] Bernardes A. T., Ann. Physik 5 pp 539– (1996)
[15] DOI: 10.1023/A:1017047212008 · doi:10.1023/A:1017047212008
[16] DOI: 10.1016/S0378-4371(97)00648-1 · doi:10.1016/S0378-4371(97)00648-1
[17] DOI: 10.1142/S0129183100001024 · doi:10.1142/S0129183100001024
[18] DOI: 10.1016/S0378-4371(98)00124-1 · doi:10.1016/S0378-4371(98)00124-1
[19] DOI: 10.1142/S0129183196000119 · doi:10.1142/S0129183196000119
[20] DOI: 10.2307/3546672 · doi:10.2307/3546672
[21] DOI: 10.1142/S0129183100000444 · doi:10.1142/S0129183100000444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.