×

A displacement-like finite element model for \(J_2\) elastoplasticity: Variational formulation and finite-step solution. (English) Zbl 0964.74061

Summary: We revisit the displacement-like finite element formulation for finite-step \(J_2\) elastoplasticity. The classical computational strategy, according to which plastic loading is tested at Gauss points of each element and an independent return mapping algorithm is performed for given incremental displacements, is consistently derived from a suitably discretized version of a min-max variational principle. The sequence of solution phases to be performed within each load step adopting a full Newton’s method is illustrated in detail, and the importance of a correct update of the plastic strains is emphasized. Next we show that, in order to increase the rate of convergence and the stability properties of the Newton’s method, the consistent elastoplastic tangent operator must be exploited even at the first iteration of each load step subsequent to the first yielding of structural model. This is in contrast with the traditional implementation according to which the elastic operator is used at the first iteration of each load step. The effectiveness of the present approach is shown by a set of numerial examples referred to plane strain problems.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
Full Text: DOI

References:

[1] (Ansys 5.0. Ansys 5.0, User’s Manual, Vol. IV — Theory (1992), Swanson Analysis Systems Inc: Swanson Analysis Systems Inc Houston, USA)
[2] Auricchio, F.; Taylor, R. L.; Lubliner, J., Application of a return map algorithm to plasticity models, (Owen, D. R.J.; etal., Computational Plasticity, 3rd Int. Conf. (1992), Pineridge Press: Pineridge Press Swansea), 2229-2248
[3] Bathe, K. J., Finite Element Procedures in Engineering Analysis (1995), Prentice Hall: Prentice Hall New York · Zbl 0890.00056
[4] Capurso, M., Principi di minimo per la soluzione incrementale dei problemi elastoplastici Parte I e II, (Rend. Acc. Naz. Lincei, XLVI (1969), Aprile-Maggio) · Zbl 0187.48003
[5] Capurso, M.; Maier, G., Incremental elastoplastic analysis and quadratic optimization, Meccanica, V, 1, 107-117 (1970) · Zbl 0198.58301
[6] Comi, C.; Maier, G., Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening, Eur. J. Mech., A/Solids, 9, 6, 563-585 (1990) · Zbl 0807.73079
[7] Comi, C.; Corigliano, A.; Maier, G., Extremum properties of finite-step solutions in elastoplasticity with nonlinear mixed hardening, Int. J. Solids Struct., 27, 8, 965-981 (1991) · Zbl 0734.73024
[8] Comi, C.; Maier, G.; Perego, U., Generalized variable finite element modelling and extremum theorems in stepwise holonomic elastoplasticity with internal variables, Comput. Methods Appl. Mech. Engrg., 96, 213-237 (1992) · Zbl 0761.73107
[9] Comi, C.; Perego, U., A unified approach for variationally consistent finite elements in elastoplasticity, Comput. Methods Appl. Mech. Engrg., 121, 323-344 (1995) · Zbl 0852.73058
[10] Crisfield, M. A., (Non-linear Finite Element Analysis of Solids and Structures, Vol. 1 (1991), Wiley: Wiley London) · Zbl 0809.73005
[11] Dodds, R. J., Numerical techniques for plasticity computations in finite element analysis, Comput. Struct., 26, 767-779 (1987) · Zbl 0614.73025
[12] Fuschi, P.; Peric, D.; Owen, D. R.J., Studies in generalized midpoint integration in rate-independent plasticity with reference to plane stress \(J_2\)-flow theory, Comput. Struct., 43, 1117-1133 (1992) · Zbl 0771.73023
[13] Greenberg, H. J., Complementary minimum principles for an elastic-plastic material, Quart. Appl. Math., 7, 85-92 (1949) · Zbl 0032.22204
[14] Halphen, B.; Nguyen, Q. S., Sur les matériaux standards généralisés, J. Mech., 14, 39-63 (1975) · Zbl 0308.73017
[15] Hofstetter, G.; Simo, J. C.; Taylor, R. L., A modified cap model: closest point solution algorithms, Comput. Struct., 46, 203-214 (1993) · Zbl 0782.73026
[16] Krieg, R. D.; Key, S. W., Implementation of a time dependent plasticity theory into structural computer programs, (Stricklin, J. A.; Saczalski, K. J., Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects. Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects, AMD-20 (1976), ASME: ASME New York) · Zbl 0471.73077
[17] Krieg, R. D.; Krieg, D. B., Accuracies of numerical solution methods for elastic-perfectly plastic model, J. Pressure Vessel Tech., ASME, 99, 510-515 (1977)
[18] Lubliner, J., Plasticity Theory (1990), Macmillan: Macmillan New York · Zbl 0745.73006
[19] de Sciarra, F. Marotti; Rosati, L., On a specialization of the generalized standard material, (Mook, D. T.; etal., PACAM IV, 4th Pan Amer. Congr. of Appl. Mech. (1995)) · Zbl 0848.73024
[20] de Sciarra, F. Marotti; Rosati, L., Extremum theorems and a computational algorithm for an internal variable model of elastoplasticity, Eur. J. Mech. A/Solids., 14, 6, 843-871 (1995) · Zbl 0848.73024
[21] de Sciarra, F. Marotti; Rosati, L., A unified formulation of elastoplastic models by an internal variable approach, (Owen, D. R.J.; etal., Computational Plasticity, 4th Int. Conf. (1995), Pineridge Press: Pineridge Press Swansea), 153-164
[22] Martin, J. B.; Reddy, B. D., Variational principles and solution algorithms for internal variable formulations of problems in plasticity, ((1988), Roma), 465-477, Volume in onore del Prof. Giulio Ceradini
[23] Matthies, H., A decomposition method for the integration of the elastic-plastic rate problem, Int. J. Numer. Methods Engrg., 28, 1-11 (1989) · Zbl 0669.73022
[24] Nagtegaal, J. C., On the implementation of inelastic constitutive equations with special reference to large deformation problems, Comput. Methods Appl. Mech. Engrg., 93, 253-273 (1982) · Zbl 0492.73077
[25] Nguyen, Q. S., On the elastic plastic initial-boundary value problem and its numerical integration, Int. J. Numer. Methods Engrg., 11, 817-832 (1977) · Zbl 0366.73034
[26] Nyssen, C.; Beckers, P., A unified approach for displacement, equilibrium, and hybrid finite element models in elastoplasticity, Comput. Methods Appl. Mech. Engrg., 44, 131-151 (1984) · Zbl 0535.73056
[27] Ortiz, M.; Popov, E. P., Accuracy and stability of integration algorithms for elastoplastic constitutive relations, Int. J. Numer. Methods Engrg., 21, 1561-1576 (1985) · Zbl 0585.73057
[28] Ortiz, M.; Simo, J. C., An analysis of a new class of integration algorithms for elastoplastic constitutive relations, Int. J. Numer. Methods Engrg., 23, 353-366 (1986) · Zbl 0585.73058
[29] Owen, D. R.J.; Hinton, E., Finite Elements in Plasticity: Theory and Practice (1980), Pineridge Press: Pineridge Press Swansea · Zbl 0482.73051
[30] Prager, W.; Hodge, P. G., Theory of Perfect Plastic Solids (1951), John Wiley: John Wiley New York · Zbl 0044.39803
[31] Reddy, B. D.; Martin, J. B., Algorithms for the solution of internal variable problems in plasticity, Comput. Methods Appl. Mech. Engrg., 93, 253-273 (1991) · Zbl 0744.73023
[32] Rockafellar, R. T., Convex Analysis (1970), Princeton University Press: Princeton University Press Princeton · Zbl 0229.90020
[33] Romano, G.; Alfano, G., Variational principles, approximations and discrete formulations in plasticity, (Owen, D. R.J.; etal., Computational Plasticity, 4th Int. Conf., Vol. I (1995), Pineridge Press: Pineridge Press Swansea), 71-82
[34] Romano, G.; Rosati, L.; de Sciarra, F. Marotti, A variational theory for finite-step elasto-plastic problems, Int. J. Solids Struct., 30, 17, 2317-2334 (1993) · Zbl 0781.73081
[35] Romano, G.; Rosati, L.; de Sciarra, F. Marotti, Some remarks on costitutive laws in elasto-plasticity with internal variables, (Proc. 3rd Pan American Congress of Applied Mechanics. Proc. 3rd Pan American Congress of Applied Mechanics, San Paolo, Brazil (1993)) · Zbl 0781.73081
[36] Romano, G.; Rosati, L.; de Sciarra, F. Marotti, Variational principles for a class of finite-step elasto-plastic problems with non-linear mixed hardening, Comput. Methods Appl. Mech. Engrg., 109, 293-314 (1993) · Zbl 0845.73024
[37] Romano, G.; Rosati, L.; de Sciarra, F. Marotti; Bisegna, P., A potential theory for monotone multi-valued operators, Quart. Appl. Math., LI, 4, 613-631 (1993) · Zbl 0797.47030
[38] Schreyer, H. L.; Kulak, R. F.; Kramer, M. M., Accurate numerical solutions for elastic-plastic models, J. Pressure Vessel Tech., ASME, 101, 226-234 (1979)
[39] Simo, J. C.; Taylor, R. L., Consistent tangent operators for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Engrg., 48, 101-118 (1985) · Zbl 0535.73025
[40] Simo, J. C.; Ortiz, M., A unified approach to finite deformation elastoplasticity based on the use of hyperelastic constitutive equations, Comput. Methods Appl. Mech. Engrg., 49, 221-245 (1985) · Zbl 0566.73035
[41] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208 (1985) · Zbl 0554.73036
[42] Simo, J. C.; Taylor, R. L., A return mapping algorithm for plane stress elastoplasticity, Int. J. Numer. Methods Engrg., 22, 649-670 (1986) · Zbl 0585.73059
[43] Simo, J. C.; Ju, J. W., Strain and stress based continuum damage models Part II: computational aspects, Int. J. Solids Struct., 23, 7, 841-869 (1987) · Zbl 0634.73107
[44] Simo, J. C.; Kennedy, J. J.; Govindjee, S., Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms, Int. J. Numer. Methods Engrg., 26, 2161-2185 (1988) · Zbl 0661.73058
[45] Simo, J. C.; Govindjee, S., Non-linear B-stability and symmetry preserving return mapping algorithms for plasticity and viscoplasticity, Int. J. Numer. Methods Engrg., 31, 151-176 (1991) · Zbl 0825.73959
[46] Simo, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Methods Appl. Mech. Engrg., 99, 61-112 (1992) · Zbl 0764.73089
[47] Wilkins, M. L., (Calculation of elastic-plastic flow, Methods of Computational Physics, Vol. 3 (1964), Academic Press: Academic Press New York)
[48] Zienkiewicz, O. C.; Taylor, R. L., (The Finite Element Method, Vol. 1 e 2 (1991), McGraw Hill: McGraw Hill New York)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.