×

Examples of Riemannian manifolds with positive curvature almost everywhere. (English) Zbl 0963.53020

Let \(M\) be a manifold with quasi-positive sectional curvature (that is, with sectional curvature nonnegative everywhere and positive at a point). Can \(M\) be deformed to one with positive curvature almost everywhere? And if \(M\) is of positive sectional curvature almost everywhere, can it be deformed to one with positive curvature? The answers are not known. In this paper, the authors prove several theorems that enlighten these problems. The main result can be stated as follows:
“The unit tangent bundle of \(S^4\) admits a metric with positive sectional curvature at almost every point with the following properties.
(1) The connected component of the identity of the isometry group is isomorphic to \(SO(4)\) and contains a free \(S^3\)-subaction.
(2) The set of points where there are 0 sectional curvatures contains totally geodesic flat 2-tori and is the union of two copies of \(S^3\times S^3\) that intersect along \(S^2\times S^3\).”
In particular, by taking a circle subgroup of the free \(S^3\)-action in (1), the following corollary can be obtained:
“There is a manifold \(M^6\) with the homology of \(\mathbb{C} P^3\) but not the cohomology ring of \(\mathbb{C} P^3\), that admits a metric with positive sectional curvature almost everywhere”.

MSC:

53C20 Global Riemannian geometry, including pinching

References:

[1] T Aubin, Métriques riemanniennes et courbure, J. Differential Geometry 4 (1970) 383 · Zbl 0212.54102
[2] S Aloff, N R Wallach, An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975) 93 · Zbl 0362.53033 · doi:10.1090/S0002-9904-1975-13649-4
[3] M Berger, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa \((3)\) 15 (1961) 179 · Zbl 0101.14201
[4] M Berger, On the diameter of some Riemannian manifolds, preprint (1962)
[5] M Berger, Trois remarques sur les variétés riemanniennes à courbure positive, C. R. Acad. Sci. Paris Sér. A-B 263 (1966) · Zbl 0143.45001
[6] L Berard-Bergery, Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive, J. Math. Pures Appl. \((9)\) 55 (1976) 47 · Zbl 0289.53037
[7] J P Bourguignon, A Deschamps, P Sentenac, Quelques variations particulières d’un produit de métriques, Ann. Sci. École Norm. Sup. \((4)\) 6 (1973) 1 · Zbl 0257.53040
[8] J Cheeger, Some examples of manifolds of nonnegative curvature, J. Differential Geometry 8 (1973) 623 · Zbl 0281.53040
[9] J H Eschenburg, New examples of manifolds with strictly positive curvature, Invent. Math. 66 (1982) 469 · Zbl 0484.53031 · doi:10.1007/BF01389224
[10] J H Eschenburg, Inhomogeneous spaces of positive curvature, Differential Geom. Appl. 2 (1992) 123 · Zbl 0778.53033 · doi:10.1016/0926-2245(92)90029-M
[11] J H Eschenburg, Freie isometrische Aktionen auf kompakten Lie-Gruppen mit positiv gekrümmten Orbiträumen, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2 Serie, Universität Münster Mathematisches Institut (1984) · Zbl 0551.53024
[12] D Gromoll, W Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. \((2)\) 100 (1974) 401 · Zbl 0293.53015 · doi:10.2307/1971078
[13] K Grove, W Ziller, Curvature and symmetry of Milnor spheres, Ann. of Math. \((2)\) 152 (2000) 331 · Zbl 0991.53016 · doi:10.2307/2661385
[14] A E Hatcher, A proof of a Smale conjecture, \(\mathrm{Diff}(S^3)\simeq \mathrmO(4)\), Ann. of Math. \((2)\) 117 (1983) 553 · Zbl 0531.57028 · doi:10.2307/2007035
[15] D Husemoller, Fibre bundles, Graduate Texts in Mathematics 20, Springer (1994) · Zbl 0202.22903
[16] S Mandell, PhD thesis, SUNY, Stony Brook
[17] J C Nash, Positive Ricci curvature on fibre bundles, J. Differential Geom. 14 (1979) 241 · Zbl 0464.53035
[18] B O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966) 459 · Zbl 0145.18602 · doi:10.1307/mmj/1028999604
[19] A L Oni\vs\vcik, Transitive compact transformation groups, Mat. Sb. \((\)N.S.\()\) 60 (102) (1963) 447 · Zbl 0203.26302
[20] A Rigas, Some bundles of non-negative curvature, Math. Ann. 232 (1978) 187 · Zbl 0354.53039 · doi:10.1007/BF01421406
[21] N Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series 14, Princeton University Press (1951) · Zbl 0054.07103
[22] M Strake, Curvature increasing metric variations, Math. Ann. 276 (1987) 633 · Zbl 0616.53036 · doi:10.1007/BF01456991
[23] N R Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. \((2)\) 96 (1972) 277 · Zbl 0261.53033 · doi:10.2307/1970789
[24] F Wilhelm, Exotic spheres with lots of positive curvatures, J. Geom. Anal. 11 (2001) 161 · Zbl 1023.53024 · doi:10.1007/BF02921960
[25] F Wilhelm, An exotic sphere with positive curvature almost everywhere, J. Geom. Anal. 11 (2001) 519 · Zbl 1039.53037 · doi:10.1007/BF02922018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.