×

On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems. (English) Zbl 0962.65047

This paper discusses iterative approximations of solution of nonlinear ill-posed operator equation \(F(x)=y\). Here the right hand side \(y\) is given approximately by \(y^\delta\) and \(\|y^\delta -y\|\leq\delta\), the operator \(F\) is a continuous and Fréchet differentiable. The solution of this equation does not depend continuously on the right hand side \(y\). The author considers the following iteratively regularized Gauss-Newton method \[ x_{k+1}^\delta=x_k^\delta-(\alpha_k I+F'(x_k^\delta)^*F'(x_k^\delta))^{-1} (F'(x_k^\delta)^*(F(x_k^\delta)^*(F(x_k^\delta)-y^\delta) +\alpha_k(x_k^\delta-x_0))), \] where \(x_0^\delta=x_0\) is an initial guess of the exact solution \(x^+\) of the noise-free equation and \(\{\alpha_k\}\) is a decreasing sequence of positive numbers used to regularize the interation process. A stopping rule is designed for selecting the approximation \(x_{k_\delta}^\delta\) such that \[ \|x_{k_\delta}^\delta - x^+\|\leq C \inf\biggl\{ \|x_k-x^+\|+\frac{\delta}{\sqrt{\alpha_k}}~:~k=0,1,\ldots\biggr\} . \] Here \(C\) is constant independent of \(\delta\) and \(x_k\) is the iterative approximation of the solution \(x^+\). Numerical examples illustrate estimation of parameters.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
45G10 Other nonlinear integral equations
65R30 Numerical methods for ill-posed problems for integral equations
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
47J06 Nonlinear ill-posed problems
47J25 Iterative procedures involving nonlinear operators
Full Text: DOI

References:

[1] A. B. Bakushinskiĭ, On a convergence problem of the iterative-regularized Gauss-Newton method, Zh. Vychisl. Mat. i Mat. Fiz. 32 (1992), no. 9, 1503 – 1509 (Russian, with Russian summary); English transl., Comput. Math. Math. Phys. 32 (1992), no. 9, 1353 – 1359 (1993). · Zbl 0783.65052
[2] H. T. Banks and K. Kunisch, Estimation techniques for distributed parameter systems, Systems & Control: Foundations & Applications, vol. 1, Birkhäuser Boston, Inc., Boston, MA, 1989. · Zbl 0695.93020
[3] Barbara Blaschke, Andreas Neubauer, and Otmar Scherzer, On convergence rates for the iteratively regularized Gauss-Newton method, IMA J. Numer. Anal. 17 (1997), no. 3, 421 – 436. · Zbl 0881.65050 · doi:10.1093/imanum/17.3.421
[4] Keith Glover and Jonathan R. Partington, Bounds on the achievable accuracy in model reduction, Modelling, robustness and sensitivity reduction in control systems (Groningen, 1986) NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., vol. 34, Springer, Berlin, 1987, pp. 95 – 118.
[5] Heinz W. Engl, Regularization methods for the stable solution of inverse problems, Surveys Math. Indust. 3 (1993), no. 2, 71 – 143. · Zbl 0776.65043
[6] Heinz W. Engl and Helmut Gfrerer, A posteriori parameter choice for general regularization methods for solving linear ill-posed problems, Appl. Numer. Math. 4 (1988), no. 5, 395 – 417. · Zbl 0647.65038 · doi:10.1016/0168-9274(88)90017-7
[7] Heinz W. Engl, Karl Kunisch, and Andreas Neubauer, Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems, Inverse Problems 5 (1989), no. 4, 523 – 540. · Zbl 0695.65037
[8] Helmut Gfrerer, An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates, Math. Comp. 49 (1987), no. 180, 507 – 522, S5 – S12. · Zbl 0631.65056
[9] C. W. Groetsch, The theory of Tikhonov regularization for Fredholm equations of the first kind, Research Notes in Mathematics, vol. 105, Pitman (Advanced Publishing Program), Boston, MA, 1984. · Zbl 0545.65034
[10] Charles W. Groetsch, Inverse problems in the mathematical sciences, Vieweg Mathematics for Scientists and Engineers, Friedr. Vieweg & Sohn, Braunschweig, 1993. · Zbl 0779.45001
[11] Martin Hanke, Andreas Neubauer, and Otmar Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math. 72 (1995), no. 1, 21 – 37. · Zbl 0840.65049 · doi:10.1007/s002110050158
[12] Bernd Hofmann, Regularization for applied inverse and ill-posed problems, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 85, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1986. A numerical approach; With German, French and Russian summaries. · Zbl 0606.65038
[13] Q. N. Jin and Z. Y. Hou, On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems, Numer. Math., 83(1999), 139-159. CMP 99:16
[14] Barbara Kaltenbacher, Some Newton-type methods for the regularization of nonlinear ill-posed problems, Inverse Problems 13 (1997), no. 3, 729 – 753. · Zbl 0880.65033 · doi:10.1088/0266-5611/13/3/012
[15] Alfred Karl Louis, Inverse und schlecht gestellte Probleme, Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks], B. G. Teubner, Stuttgart, 1989 (German). · Zbl 0667.65045
[16] Andreas Neubauer, On converse and saturation results for Tikhonov regularization of linear ill-posed problems, SIAM J. Numer. Anal. 34 (1997), no. 2, 517 – 527. · Zbl 0878.65038 · doi:10.1137/S0036142993253928
[17] R. Plato and U. Hämarik, On pseudo-optimal parameter choices and stopping rules for regularization methods in Banach spaces, Numer. Funct. Anal. Optim. 17 (1996), no. 1-2, 181 – 195. · Zbl 0865.65039 · doi:10.1080/01630569608816690
[18] Otmar Scherzer, A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems, Numer. Funct. Anal. Optim. 17 (1996), no. 1-2, 197 – 214. · Zbl 0852.65048 · doi:10.1080/01630569608816691
[19] O. Scherzer, H. W. Engl, and K. Kunisch, Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. Numer. Anal. 30 (1993), no. 6, 1796 – 1838. · Zbl 0799.65060 · doi:10.1137/0730091
[20] Thomas I. Seidman and Curtis R. Vogel, Well-posedness and convergence of some regularisation methods for nonlinear ill posed problems, Inverse Problems 5 (1989), no. 2, 227 – 238. · Zbl 0691.35090
[21] Andrey N. Tikhonov and Vasiliy Y. Arsenin, Solutions of ill-posed problems, V. H. Winston & Sons, Washington, D.C.: John Wiley & Sons, New York-Toronto, Ont.-London, 1977. Translated from the Russian; Preface by translation editor Fritz John; Scripta Series in Mathematics. · Zbl 0354.65028
[22] Итерационные процедуры в некорректных задачах, ”Наука”, Мосцощ, 1986 (Руссиан). · Zbl 0593.65040
[23] V. V. Vasin and A. L. Ageev, Ill-posed problems with a priori information, Inverse and Ill-posed Problems Series, VSP, Utrecht, 1995. · Zbl 0840.65048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.