×

On properties of Sylvester and Lyapunov operators. (English) Zbl 0962.15006

The paper studies Sylvester and Lyapunov operators in real and complex matrix spaces including operators arising in the theory of linear time-invariant systems. The linear operator \({\mathcal M}:{\mathbb F}^{m\times n}\rightarrow {\mathbb F}^{p\times q}\) (with \({\mathbb F}={\mathbb R}\) or \({\mathbb C}\)) is elementary if \({\mathcal M}[X]=AXB\) for some \(A\in {\mathbb F}^{p\times m}\) and \(B\in {\mathbb F}^{n\times q}\). Each \({\mathcal M}\) can be represented as a sum of a minimal number (called the Sylvester index \(Sy[{\mathcal M}]\) of \({\mathcal M}\)) of elementary operators. An expression for \(Sy[{\mathcal M}]\) is given using a special permutation operator \({\mathcal V}_{p,m}: {\mathbb F}^{pq\times mn}\rightarrow {\mathbb F}^{pm\times nq}\) such that the image \({\mathcal V}_{p,m}(B^T\otimes A)\) of the matrix of a non-zero elementary operator is equal to the rank 1 matrix vec\([A]\)row\([B]\) (vec\([X]\) and row\([X]\) are the column-wise and row-wise vector representations of the matrix \(X\)). The application \({\mathcal V}_{p,m}\) reduces a sum of Kronecker products of matrices to the standard product of two matrices.
A linear operator \({\mathcal L}:{\mathbb F}^{n\times n}\rightarrow {\mathbb F}^{n\times n}\) is a Lyapunov operator (LO) if \(({\mathcal L}[X])^*={\mathcal L}[X^*]\) (A) the star denoting transposition in the real case and complex conjugation and transposition in the complex case. Characterizations and parametrizations of the sets of real and complex LOs are given and their dimensions are found; Lyapunov indices for LOs are introduced and calculated. Similar results are given for some classes of Lyapunov-like linear and pseudo-linear operators in which condition (A) is replaced by a similar one. The notion of Lyapunov singular values of an LO is introduced and the application of these values to the sensitivity and a posteriori error analysis of Lyapunov equations is discussed.
Reviewer: V.P.Kostov (Nice)

MSC:

15A24 Matrix equations and identities
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Barlow, J. B.; Monahemi, M. M.; O’Leary, D. P., Constrained matrix Sylvester equations, SIAM J. Matrix Anal. Appl., 13, 1-9 (1992) · Zbl 0746.65039
[2] Barnett, S., Introduction to Mathematical Control Theory (1975), Oxford University Press: Oxford University Press Oxford · Zbl 0307.93001
[3] Barnett, S.; Storey, C., Matrix Methods in Stability Theory (1970), Nelson: Nelson London · Zbl 0243.93017
[4] Byers, R.; Nash, S., On the singular “vectors” of the Lyapunov operator, SIAM J. Algebraic Discrete Methods, 8, 59-66 (1987) · Zbl 0633.65042
[5] Carlson, D.; Loewy, R., On ranges of Lyapunov transformations, Linear Algebra Appl., 8, 237-248 (1974) · Zbl 0284.15013
[6] Gahinet, P. M.; Laub, A. J.; Kenney, C. S.; Hewer, G. A., Sensitivity of the stable discrete-time Lyapunov equation, IEEE Trans. Automat. Control, 35, 1209-1217 (1990) · Zbl 0721.93064
[7] Gajić, Z.; Qureshi, M. T.J., Lyapunov Matrix Equation in System Stability and Control (1995), Academic Press: Academic Press San Diego, CA · Zbl 1153.93300
[8] W. Givens, Elementary divisors and some properties of the Lyapunov mapping \(X→AX+\(XA^*\); W. Givens, Elementary divisors and some properties of the Lyapunov mapping \(X→AX+\(XA^*\)
[9] Hewer, G.; Kenney, C., The sensitivity of the stable Lyapunov equation, SIAM J. Cont. Optim., 26, 321-344 (1988) · Zbl 0655.93050
[10] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0576.15001
[11] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis (1991), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0729.15001
[12] Kenney, C.; Hewer, G., The sensitivity of the algebraic and differential Riccati equations, SIAMJ. Cont. Optim., 28, 50-69 (1990) · Zbl 0695.65025
[13] M. Konstantinov, P. Petkov, D.W. Gu, V. Mehrmann, Sensitivity of general Lyapunov equations, Technical Report 98-15, Department of Engineering, Leicester University, Leicester, UK, August 1998; M. Konstantinov, P. Petkov, D.W. Gu, V. Mehrmann, Sensitivity of general Lyapunov equations, Technical Report 98-15, Department of Engineering, Leicester University, Leicester, UK, August 1998
[14] Konstantinov, M.; Stanislavova, M.; Petkov, P., Perturbation bounds and characterisation of the solution of the associated algebraic Riccati equation, Linear Algebra Appl., 285, 7-31 (1998) · Zbl 0933.15025
[15] M.M. Konstantinov, P.Hr. Petkov, N.D. Christov, The associated algebraic Riccati equation, in: Proc. Third Internat. Conf. on Systems Engr., Wright State University, Dayton, OH, 1984, pp. 530-537; M.M. Konstantinov, P.Hr. Petkov, N.D. Christov, The associated algebraic Riccati equation, in: Proc. Third Internat. Conf. on Systems Engr., Wright State University, Dayton, OH, 1984, pp. 530-537
[16] Konstantinov, M. M.; Petkov, P. Hr.; Christov, N. D., Perturbation analysis of the discrete Riccati equation, Kybernetica (Prague), 29, 18-29 (1993) · Zbl 0792.93053
[17] L.Kronecker,AlgebraischeReductionderSchaarenbilineareFormen,S.B.Akad.Berlin,1880,pp. 1225-1237; L.Kronecker,AlgebraischeReductionderSchaarenbilineareFormen,S.B.Akad.Berlin,1880,pp. 1225-1237
[18] V. Mehrmann, The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution, Lecture Notes in Control and Information Sciences, No. 163, Springer, Heidelberg, 1991; V. Mehrmann, The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution, Lecture Notes in Control and Information Sciences, No. 163, Springer, Heidelberg, 1991 · Zbl 0746.93001
[19] Petkov, P. Hr.; Christov, N. D.; Konstantinov, M. M., Computational Methods for Linear Control Systems (1991), Prentice-Hall: Prentice-Hall Hemel Hempstead, Herts, UK · Zbl 0790.93001
[20] Roth, W. E., The equations \(AX−YB=C\) and \(AX−XB=C\) in matrices, Proc. Amer. Math. Soc., 3, 392-396 (1952) · Zbl 0047.01901
[21] Rutherford, D. E., On the solution of the matrix equation \(AX+XB=C\), Nederl. Akad. Wetensch. Proc. Ser. A, 35, 53-59 (1932) · Zbl 0004.19502
[22] Stein, P., On the ranges of two functions of positive definite matrices, J. Algebra, 2, 350-353 (1965) · Zbl 0274.15010
[23] Stein, P.; Pfeffer, A., On the ranges of two functions of positive definite matrices II, ICC Bull., 6, 81-86 (1967)
[24] Stewart, G. W., Introduction to Matrix Computations (1973), Academic Press: Academic Press New York · Zbl 0302.65021
[25] J.J. Sylvester, Sur la solution du cas le plus général des équations linéaires en quantités binaires, c’est-à-dire en quaternions ou en matrices du second ordre, C.R. Acad. Sci. Paris 99 (1884) 117, 118; J.J. Sylvester, Sur la solution du cas le plus général des équations linéaires en quantités binaires, c’est-à-dire en quaternions ou en matrices du second ordre, C.R. Acad. Sci. Paris 99 (1884) 117, 118
[26] Sylvester, J. J., Sur l’équation en matrices \(px=xq\), C.R. Acad. Sci. Paris, 99, 67-71 (1884) · JFM 16.0108.03
[27] Taussky, O.; Wielandt, H., On the matrix function \(AX+X^′A^′\), Arch. Rat. Mech. Anal., 9, 93-96 (1962) · Zbl 0101.25402
[28] Watkins, D. S., Fundamentals of Matrix Computations (1991), Wiley: Wiley New York · Zbl 0746.65022
[29] Wedderburn, J. H.M., Note on the linear matrix equation, Proc. Edinburgh Math. Soc., 22, 49-53 (1904) · JFM 35.0187.01
[30] W.M. Wonham, Linear Multivariable Control: A Geometric Approach, second ed., Springer, New York, 1979; W.M. Wonham, Linear Multivariable Control: A Geometric Approach, second ed., Springer, New York, 1979 · Zbl 0424.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.