×

Spectral theory and hypercyclic subspaces. (English) Zbl 0961.47003

Let \(T\) be a bounded linear operator in a Hilbert space \(H\). A vector \(x\) in \(H\) is called hypercyclic for \(T\) if its orbit \((T^n x : n > 0)\) is dence in \(H\). The main results of the authors reads as follows: If \(T\) satisfy the hypercyclicty criterion of C. Kitai and its essential spectrum intersects the closed unit disc, then there exists an infinite-dimensional closed subspace of \(H\) consisting (expect for zero) of hypercyclic vectors of \(T\). The converse is true for operators with hypercyclic vectors not necessarily satisfying the hypercycling criterion. The authors obtain different characterizations for operators to have an infinite-dimensional closed subspace of hypercyclic vectors. The results apply to bilateral and backward weighted shifts and perturbations of the identity by backward shifts in separable Hilbert spaces, to composition operators in the Hardy space, multiplication operators in Hilbertspaces of holomorphic functions with bounded point evaluations and to the differentiation operator and translation operators in certain Hilbert spaces of entire functions. Further the authors obtain a spectral characterization of the norm-closure of the class of that operators which have an infinite-dimensional closed subspace of hypercyclic vectors. A relevant tool for the proofs is the essential minimum modulus of an operator, the author give several interesting remarks on this concept and on the essential spectrum of operators.

MSC:

47A16 Cyclic vectors, hypercyclic and chaotic operators
47A53 (Semi-) Fredholm operators; index theories
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
47B33 Linear composition operators
46E20 Hilbert spaces of continuous, differentiable or analytic functions
Full Text: DOI

References:

[1] Shamim I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), no. 2, 374 – 383. · Zbl 0853.47013 · doi:10.1006/jfan.1995.1036
[2] Constantin Apostol, Lawrence A. Fialkow, Domingo A. Herrero, and Dan Voiculescu, Approximation of Hilbert space operators. Vol. II, Research Notes in Mathematics, vol. 102, Pitman (Advanced Publishing Program), Boston, MA, 1984. · Zbl 0572.47001
[3] Bernard Beauzamy, Un opérateur, sur l’espace de Hilbert, dont tous les polynômes sont hypercycliques, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 18, 923 – 925 (French, with English summary). · Zbl 0612.47003
[4] Luis Bernal González and Alfonso Montes Rodríguez, Non-finite-dimensional closed vector spaces of universal functions for composition operators, J. Approx. Theory 82 (1995), no. 3, 375 – 391. · Zbl 0831.30024 · doi:10.1006/jath.1995.1086
[5] G. D. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions entières, C. R. Acad. Sci. Paris 189 (1929), 473-475. · JFM 55.0192.07
[6] Richard Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), no. 4, 513 – 517. · Zbl 0483.47015 · doi:10.1512/iumj.1981.30.30042
[7] Paul S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118 (1993), no. 3, 845 – 847. · Zbl 0809.47005
[8] Paul S. Bourdon and Joel H. Shapiro, Cyclic composition operators on \?², Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 43 – 53.
[9] Paul S. Bourdon and Joel H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), no. 596, x+105. · Zbl 0996.47032 · doi:10.1090/memo/0596
[10] Kit C. Chan and Joel H. Shapiro, The cyclic behavior of translation operators on Hilbert spaces of entire functions, Indiana Univ. Math. J. 40 (1991), no. 4, 1421 – 1449. · Zbl 0771.47015 · doi:10.1512/iumj.1991.40.40064
[11] John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. · Zbl 0558.46001
[12] Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. · Zbl 0873.47017
[13] Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. · Zbl 0542.46007
[14] Per Enflo, On the invariant subspace problem for Banach spaces, Acta Math. 158 (1987), no. 3-4, 213 – 313. · Zbl 0663.47003 · doi:10.1007/BF02392260
[15] Robert M. Gethner and Joel H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281 – 288. · Zbl 0618.30031
[16] A. S. Andreev, Estimates for the spectrum of compact pseudodifferential operators in unbounded domains, Mat. Sb. 181 (1990), no. 7, 995 – 1006 (Russian); English transl., Math. USSR-Sb. 70 (1991), no. 2, 431 – 443. · Zbl 0723.35053
[17] Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. · Zbl 0144.38704
[18] Domingo A. Herrero, Approximation of Hilbert space operators. Vol. 1, 2nd ed., Pitman Research Notes in Mathematics Series, vol. 224, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. · Zbl 0654.46063
[19] Domingo A. Herrero, A metatheorem on similarity and approximation of operators, J. London Math. Soc. (2) 42 (1990), no. 3, 535 – 554. · Zbl 0675.41051 · doi:10.1112/jlms/s2-42.3.535
[20] Domingo A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), no. 1, 179 – 190. · Zbl 0758.47016 · doi:10.1016/0022-1236(91)90058-D
[21] Domingo A. Herrero and Zong Yao Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), no. 3, 819 – 829. · Zbl 0724.47009 · doi:10.1512/iumj.1990.39.39039
[22] C. Kitai, Invariant Closed Sets for Linear Operators, Thesis, Univ. Toronto, 1982.
[23] Shamim I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (1997), no. 2, 384 – 390. , https://doi.org/10.1006/jfan.1996.3093 Fernando León-Saavedra and Alfonso Montes-Rodríguez, Linear structure of hypercyclic vectors, J. Funct. Anal. 148 (1997), no. 2, 524 – 545. · Zbl 0999.47009 · doi:10.1006/jfan.1996.3084
[24] Endre Makai Jr. and Jaroslav Zemánek, The surjectivity radius, packing numbers and boundedness below of linear operators, Integral Equations Operator Theory 6 (1983), no. 3, 372 – 384. · Zbl 0511.47002 · doi:10.1007/BF01691904
[25] G. R. MacLane, Sequences of derivatives and normal families, J. Analyse Math. 2 (1952), 72-87. · Zbl 0049.05603
[26] Alfonso Montes-Rodríguez, Banach spaces of hypercyclic vectors, Michigan Math. J. 43 (1996), no. 3, 419 – 436. · Zbl 0907.47023 · doi:10.1307/mmj/1029005536
[27] Marco Pavone, Chaotic composition operators on trees, Houston J. Math. 18 (1992), no. 1, 47 – 56. · Zbl 0773.47019
[28] C. J. Read, A solution to the invariant subspace problem on the space \?\(_{1}\), Bull. London Math. Soc. 17 (1985), no. 4, 305 – 317. · Zbl 0574.47006 · doi:10.1112/blms/17.4.305
[29] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17 – 22. · Zbl 0174.44203
[30] Héctor Salas, A hypercyclic operator whose adjoint is also hypercyclic, Proc. Amer. Math. Soc. 112 (1991), no. 3, 765 – 770. · Zbl 0748.47023
[31] Héctor N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993 – 1004. · Zbl 0822.47030
[32] Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. · Zbl 0791.30033
[33] Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Amer. Math. Soc., Providence, R.I., 1974, pp. 49 – 128. Math. Surveys, No. 13. · Zbl 0303.47021
[34] W. P. Seidel and J. L. Walsh, On Approximation by Euclidean and non-Euclidean Translates of an Analytic Function, Bull. Amer. Math. Soc. 47 (1941), 916-920. · Zbl 0028.40003
[35] J. Zemánek, Geometric interpretation of the essential minimum modulus, in: Invariant Subspaces and Other Topics (Timisoara/Herculane, 1981), Operator Theory: Adv. Appl, vol. 6, Birkhäuser, 1982, pp. 225-227.
[36] Jaroslav Zemánek, The semi-Fredholm radius of a linear operator, Bull. Polish Acad. Sci. Math. 32 (1984), no. 1-2, 67 – 76 (English, with Russian summary). · Zbl 0583.47016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.