×

A \(C^1\) finite element including transverse shear and torsion warping for rectangular sandwich beams. (English) Zbl 0958.74064

The authors construct a finite element to analyse sandwich beams, including bending, torsion and traction in small displacement elasticity. The element is fully free of shear locking and is based on a refined shear deformation theory. The performance of the element is tested by comparing presented numerical results with available exact solutions.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Touratier, Int. J. Solids Struct. 29 pp 1379– (1992) · Zbl 0759.73040 · doi:10.1016/0020-7683(92)90085-8
[2] Lee, Int. J. Numer. Meth. Engng. 33 pp 409– (1992) · doi:10.1002/nme.1620330211
[3] Davalos, Composite Struct. 28 pp 241– (1994) · doi:10.1016/0263-8223(94)90012-4
[4] Touratier, Comput. Struct. 54 pp 897– (1995) · Zbl 0920.73229 · doi:10.1016/0045-7949(94)E0175-2
[5] Sheinman, Int. J. Numer. Meth. Engng. 39 pp 2155– (1996) · Zbl 0880.73070 · doi:10.1002/(SICI)1097-0207(19960715)39:13<2155::AID-NME948>3.0.CO;2-H
[6] Booker, J. Engng. Mech. 97 pp 1451– (1971)
[7] Cheng, J. Engng. Mech. 115 pp 1150– (1989) · doi:10.1061/(ASCE)0733-9399(1989)115:6(1150)
[8] Sankar, J. Appl. Mech. 60 pp 246– (1993) · doi:10.1115/1.2900765
[9] Savoia, Composite Struct. 25 pp 587– (1993) · doi:10.1016/0263-8223(93)90207-7
[10] Withney, AIAA J. 32 pp 662– (1993) · Zbl 0800.73236 · doi:10.2514/3.12038
[11] in and ?A dynamical theory of inhomogeneous slender structures and its applications?, and (eds.), Refined Dynamical Theories of Beams, Plates and Shells and their Applications, Lecture Notes in Engineering. Vol. 28, Springer-Verlag, Berlin, 1987, pp. 333-347. · doi:10.1007/978-3-642-83040-2_29
[12] Polit, Int. J. Numer. Meth. Engng. 37 pp 387– (1994) · Zbl 0788.73072 · doi:10.1002/nme.1620370303
[13] Pagano, J. Comp. Mater. 4 pp 20– (1970) · doi:10.1177/002199837000400102
[14] A Treatise on the Mathematical Theory of Elasticity, 4th edn, Dover, New York, 1944.
[15] Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.
[16] Touratier, Int. J. Engng. Sci. 29 pp 901– (1991) · Zbl 0825.73299 · doi:10.1016/0020-7225(91)90165-Y
[17] Touratier, Int. J. Solids Struct. 29 pp 1401– (1992) · Zbl 0759.73041 · doi:10.1016/0020-7683(92)90086-9
[18] Muller, J. Sound Vib. 87 pp 115– (1983) · Zbl 0519.73042 · doi:10.1016/0022-460X(83)90443-1
[19] B?akou, Int. J. Numer. Meth. Engng. 36 pp 627– (1993) · Zbl 0769.73074 · doi:10.1002/nme.1620360406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.