×

Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: Weak and strong field dynamo action. (English) Zbl 0957.76096

From the summary: We describe a numerical model for magnetohydrodynamic convective flow of Boussinesq fluid in a rapidly rotating spherical shell, driven by the buoyancy forces arising from incoming buoyant flux at the inner core boundary. The model is designed to investigate the generation of magnetic field in the Earth’s fluid outer core. We use an axisymmetric inertial force to balance the axial magnetic torque arising from the Lorentz force, and we use a mixed spectral-finite difference algorithm for the parallelization of the code. We test our numerical model by examining purely thermal convection in a rapidly rotating fluid shell, and by examining Kumar-Roberts kinematic dynamos (modified for the spherical shell). Our results agree well with previous studies. We also present a weak-field dynamo solution in a very simplified system, and strong-field dynamo solutions in a more realistic system.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76U05 General theory of rotating fluids
76M22 Spectral methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
86A25 Geo-electricity and geomagnetism
65Y05 Parallel numerical computation
Full Text: DOI

References:

[1] Glatzmaier, G. A.; Roberts, P. H., A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle, Phys. Earth Planet. Inter., 91, 63 (1995)
[2] Glatzmaier, G. A.; Roberts, P. H., A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, 377, 203 (1995)
[3] Glatzmaier, G. A.; Roberts, P. H., An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection, Phys. D, 97, 81 (1996)
[4] Glatzmaier, G. A.; Roberts, P. H., Rotation and magnetism of Earth’s inner core, Science, 274, 1887 (1996)
[5] Kumar, S.; Roberts, P. H., Proc. Roy. Soc. London Ser. A, 314, 235 (1975)
[6] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1981) · Zbl 0142.44103
[7] Cowling, T. G., The magnetic field of sunspots, Mon. Not. Roy. Astron. Soc, 94, 39 (1934) · Zbl 0008.28002
[8] D. Gubbins, and, P. H. Roberts, Magnetohydrodynamics of the Earth’s core, in, Geomagnetism, edited by, J. A. Jacobs, Academic Press, London, 1987, Vol, 2, Chap. 1.; D. Gubbins, and, P. H. Roberts, Magnetohydrodynamics of the Earth’s core, in, Geomagnetism, edited by, J. A. Jacobs, Academic Press, London, 1987, Vol, 2, Chap. 1.
[9] St. Pierre, M. G., On the Numercial Simulation of Rapidly Rotating, Strong Field Dynamos (1993)
[10] Jones, C. A.; Longbottom, A. W.; Hollerbach, R., A self-consistent convection driven geodynamo model using a mean field approximation, Phys. Earth Planet. Inter., 92, 119 (1995)
[11] Taylor, J. B., The magnetohydrodynamics of a rotating fluid and the Earth’s dynamo problem, Proc. Roy. Soc. London. Ser. A, 274, 274 (1963) · Zbl 0125.43804
[12] Goldstein, H., Classical Mechanics (1980) · Zbl 0491.70001
[13] Walker, M. R.; Barenghi, C. F.; Jones, C. A., A note on dynamo action at asymptotically small Ekman number, Geophys. Astrophys. Fluid Dynam, 88, 261 (1998)
[14] Greenspan, H. P., The Theory of Rotating Fluids (1968) · Zbl 0182.28103
[15] Fearn, D. R.; Proctor, M. R.E.; Sellar, C. C., Nonlinear magnetoconvection in a rapidly rotating sphere and taylor’s constraint, Geophys. Astrophys. Fluid Dynam, 77, 111 (1994)
[16] Fearn, D. R.; Proctor, M. R.E., Magnetostrophic balance in non-axisymmetric, non-standard dynamo models, Geophys. Astrophys. Fluid Dynam, 67, 117 (1992)
[17] Tough, J. G.; Roberts, P. H., Nearly symmetric hydrodynamic dynamos, Phys. Earth Planet. Inter, 1, 288 (1968)
[18] Braginsky, S. I., Nearly axially symmetric model of the hydromagnetic dynamo of the earth, Geomag. Aeron, 18, 225 (1978)
[19] Jault, D.; LeMouël, J.-L., The topographic torque associated with a tangentially geostrophic motion at the core surface and inferences on the flow inside the core, Geophys. Astrophys. Fluid Dynam, 48, 273 (1989) · Zbl 0688.76076
[20] Bloxham, J.; Jackson, A., Time-dependent mapping of the magnetic field at the core-mantle boundary, J. Geophys. Res, 97, 19537 (1992)
[21] Roberts, P. H.; Stewartson, K., On double-roll convection in a rotating magnetic system, J. Fluid Mech., 68, 447 (1975) · Zbl 0308.76034
[22] Jault, D., Model \(z\) by computation and \(t\) aylor’s condition, Geophys. Astrophys. Fluid Dynam., 79, 99 (1995)
[23] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1981)
[24] Glatzmaier, G. A., Numerical simulations of stellar convective dynamos. I. The model and method, J. Comput. Phys, 55, 461 (1984)
[25] Canuto, C.; Hussaini, M. Y.; Zang, T. A.; Quarteroni, A., Spectral Methods in Fluid Dynamics (1988) · Zbl 0658.76001
[26] Alpert, B. K.; Rokhlin, V., A fast algorithm for the evaluation of legendre expansions, SIAM J. Sci. Statist. Comput, 12, 158 (1991) · Zbl 0726.65018
[27] Dahlquist, G., A special stability problem for linear multistep methods, BIT, 3, 27 (1963) · Zbl 0123.11703
[28] Gear, C. W., Numerical Initial Value Problems in Odrdinary Differential Equations (1971) · Zbl 0217.21701
[29] Busse, F. H., Thermal instabilities in rapidly rotating systems, J. Fluid Mech, 44, 441 (1970) · Zbl 0224.76041
[30] Yano, Jun-Ichi, Asymptotic theory of thermal convection in rapidly rotating systems, J. Fluid Mech, 243, 103 (1992) · Zbl 0759.76076
[31] Sarson, G. R.; Gubbins, D., Three-dimensional kinematic dynamos dominated by strong differential rotation, J. Fluid Mech, 306, 223 (1996) · Zbl 0864.76098
[32] Holme, R., Three-dimensional kinematic dynamos with equatorial symmetry: Application to the magnetic fields of uranus and neptune, Phys. Earth Planet. Inter, 102, 105 (1997)
[33] Childress, S.; Soward, A. M., Convection-driven hydromagnetic dynamo, Phys. Rev. Lett, 29, 837 (1972)
[34] P. H. Roberts, and, D. Gubbins, Origin of the main field: Kinematics, in, Geomagnetism, edited by, J. A. Jacobs, Academic Press, London, 1987, Vol, 2, Chap. 2.; P. H. Roberts, and, D. Gubbins, Origin of the main field: Kinematics, in, Geomagnetism, edited by, J. A. Jacobs, Academic Press, London, 1987, Vol, 2, Chap. 2.
[35] Busse, F. H., A model of the geodynamo, Geophys. J. Roy. Astron. Soc, 42, 437 (1975) · Zbl 0319.76078
[36] Gilman, P. A.; Miller, J., Numerical simulations of stellar convective dynamos. I. The model and method, Astrophys. J. Suppl, 46, 211 (1981)
[37] Hollerbach, R.; Jones, C. A., Influence of the Earth’s inner core on geomagnetic fluctuations and reversals, Nature, 365, 541 (1993)
[38] Bloxham, J., Global magnetic field, Global Earth Physics, 1, 47-65 (1995)
[39] Kuang, W.; Bloxham, J., A numerical model of the generation of the Earth’s magnetic field, Nature, 365, 371 (1997)
[40] Braginsky, S. I., Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length, Geomag. Aeron, 10, 1 (1976)
[41] Stacey, F. D., Physics of the Earth (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.