×

Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: Theoretical and computational analysis. (English) Zbl 0957.74047

Summary: This paper presents finite element concepts accounting for finite elastoplastic strains and isotropic stress response in arbitrary shells. Three parameterization strategies for the calculation of thin and thick smooth shells as well as shell intersections are discussed in detail. In this context the importance of the deformation gradient for an efficient implementation is especially emphasized. According to the parameterizations, the computational plasticity algorithms are derived in general three-dimensional form for thick shell structures, and in a restricted two-dimensional form satisfying the plane stress state underlying thin shells. In order to describe arbitrary shell geometries, we apply the isoparametric concept to all proposed finite element formulations. These are based on quadrilateral 4-node mixed finite shell elements. The variational approaches are considered which use the enhanced assumed strain method, the assumed natural strain concept, and the reduced integration technique. By means of representative numerical examples, we demonstrate the performance of the three different finite element concepts.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
Full Text: DOI

References:

[1] Andelfinger, U., Untersuchungen zur Zuverlässigkeit Hybrid-Gemischter Finiter Elemente für Flächentragwerke, (Dissertation (1991), Institut für Baustatik der Universität Stuttgart: Institut für Baustatik der Universität Stuttgart Barvelona), Bericht Nr. 13
[2] Andelfinger, U.; Ramm, E., EAS-elements for two-dimensional, three-dimensional plate and shell structures and their equivalence to HR-elements, Int. J. Numer. Methods Engrg., 36, 1311-1337 (1993) · Zbl 0772.73071
[3] Argyris, J. H., An excursion into large rotations, Comput. Methods Appl. Mech. Engrg., 32, 85-155 (1982) · Zbl 0505.73064
[4] Basar, Y.; Ding, Y., Finite-rotation elements for nonlinear analysis of thin shell structures, Int. J. Solid Struct., 26, 83-97 (1990) · Zbl 0707.73076
[5] Bathe, K.-J.; Dvorkin, E. N., A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Int. J. Numer. Methods Engrg., 21, 367-383 (1985) · Zbl 0551.73072
[6] Betsch, P., Statische und dynamische Berechnungen von Schalen endlicher elastischer Deformationen mit gemischten Finiten Elementen, (Dissertation (1996), Institut für Baumechanik und Numerische Mechanik der Universität Hannover), Bericht Nr. F 96/4
[7] Betsch, P.; Stein, E., An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element, Comm. Appl. Numer. Methods, 11, 899-909 (1995) · Zbl 0833.73051
[8] Bischoff, M.; Ramm, E., Shear deformable shell elements for large strains and rotations, Int. J. Numer. Methods Engrg., 40, 4427-4449 (1997) · Zbl 0892.73054
[9] Büchter, N.; Ramm, E., Shell theory versus degeneration—A comparison in large rotation finite element analysis, Int. J. Numer. Methods Engrg., 34, 39-59 (1992) · Zbl 0760.73041
[10] Büchter, N.; Ramm, E.; Roehl, D., Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept, Int. J. Numer. Methods Engrg., 37, 2551-2568 (1994) · Zbl 0808.73046
[11] Bufler, H., Pressure load structures under large deformations, Zeit. Angew. Math. Mech., 64, 287-295 (1984) · Zbl 0563.73026
[12] Chroscielewski, J.; Makowski, J.; Stumpf, H., Genuinely resultant shell finite elements accounting for geometric and material non-linearity, Int. J. Numer. Methods Engrg., 35, 63-94 (1992) · Zbl 0780.73075
[13] Cuitino, A.; Ortiz, M., A material-independent method for extending stress update algorithms from small strain plasticity to finite plasticity with multiplicative kinematics, Engrg. Comput., 9, 437-451 (1992)
[14] de Boer, R., Vektor- und Tensorrechnung für Ingenieure (1982), Springer-Verlag · Zbl 0511.73004
[15] Dvorkin, E. N.; Bathe, K.-J., A continuum mechanics based four-node shell element for general nonlinear analysis, Engrg. Comput., 1, 77-88 (1984)
[16] Dvorkin, E. N.; Pantuso, D.; Repetto, A., A formulation of the MITC4 shell element for finite strain elasto-plastic analysis, Comput. Methods Appl. Mech. Engrg., 125, 17-40 (1995)
[17] Eberlein, R., Finite-Elemente-Konzepte für Schalen mit groβen elastischen und plastischen Verzerrungen, (Dissertation (1997), Institut für Mehcanik IV der Technischen Hochschule Darmstadt: Institut für Mehcanik IV der Technischen Hochschule Darmstadt Berlin)
[18] Eberlein, R.; Wriggers, P., On the calculation of finite plastic strains in shell intersections with finite elements, Tech. Mech., 18, 181-188 (1998)
[19] Eberlein, R.; Wriggers, P.; Taylor, R. L., A fully non-linear axisymmetrical quasi-Kirchhoff-type shell element for rubber-like materials, Int. J. Numer. Methods Engrg., 36, 4027-4043 (1993) · Zbl 0790.73066
[20] Gebhardt, H., Finite Elemente Konzepte für schubelastische Schalen, (Dissertation (1990), Institut für Baustatik der Universität Karlsruhe), Heft 10
[21] Glaser, S.; Armero, F., On the formulation of enhanced strain finite elements in finite deformations, Engrg. Comput., 14, 759-791 (1998) · Zbl 1071.74699
[22] Gruttmann, F., Theorie und Numerik dünnwandiger Faserverbundstrukturen, (Habilitation (1996), Institut für Baumechanik und Numerische Mechanik der Universität Hannover), Bericht Nr. F 96/1
[23] Hill, R.; Rice, J. R., Constitutive analysis of elasto-plastic crystals at arbitrary strain, J. Mech. Phys. Solids, 20, 401-413 (1972) · Zbl 0254.73031
[24] Hughes, T. J.R.; Liu, W. K., Nonlinear finite element analysis of shells: Part I. Three dimensional shells, Comput. Methods Appl. Mech. Engrg., 26, 331-362 (1981) · Zbl 0461.73061
[25] Hughes, T. J.R.; Taylor, R. L.; Kanoknukulchai, W., A simple and efficient finite element for plate bending, Int. J. Numer. Methods Engrg., 11, 1529-1547 (1977) · Zbl 0363.73067
[26] Ibrahimbegovic, A., Finite elastoplastic deformations of space-curved membranes, Comput. Methods Appl. Mech. Engrg., 119, 371-394 (1994) · Zbl 0853.73032
[27] Ibrahimbegovic, A.; Frey, F., Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II: Computational aspects, Comput. Methods Appl. Mech. Engrg., 118, 285-308 (1994) · Zbl 0849.73037
[28] Klingbeil, E., Tensorrechnung für Ingenieure, (Hochschultaschenbücher, Band 197 (1989), Bibliographisches Institut), 2. Auflage · Zbl 0675.53012
[29] Klinkel, S.; Wagner, W., A geometrical non-linear brick element based on the EAS-method, Int. J. Numer. Methods Engrg., 40, 4529-4545 (1997) · Zbl 0899.73539
[30] Korelc, J.; Wriggers, P., Consistent gradient formulation for a stable enhanced strain method for large deformations, Engrg. Comput., 13, 103-123 (1996)
[31] Krätzig, W. B., ‘Best’ transverse shearing and stretching shell theory for non-linear finite element simulations, Comput. Methods Appl. Mech. Engrg., 103, 135-160 (1993) · Zbl 0767.73074
[32] Kühborn, A.; Schoop, H., A nonlinear theory for sandwich shells including the wrinkling phenomenon, Archive Appl. Mech., 62, 413-427 (1992) · Zbl 0758.73029
[33] Lee, E. H.; Liu, D. T., Finite strain elasto-plastic theory with applications to plane-wave analysis, J. Appl. Phys., 38, 19-27 (1967)
[34] Lubliner, J., Plasticity Theory (1990), Macmillan Publishing Company: Macmillan Publishing Company Zürich · Zbl 0745.73006
[35] Mandel, J., Thermodynamics and Plasticity, (Delgado Domingers, J. J.; Nina, N. R.; Whitelaw, J. H., Foundations of Continuum Thermodynamics (1974), Macmillan: Macmillan New York), 283-304
[36] Miehe, C., (Owen, D. R.J.; Onate, E.; Hinton, E., A formulation of finite elastoplasticity in shells based on dual co- and contra-variant eigenvectors normalized with respect to a plastic metric (1997), CIMNE: CIMNE London), 1922-1929
[37] Morman, K. N., The generalized strain measure with application to non homogeneous deformations in rubber like solids, J. Appl. Mech. J. Appl. Mech, J. Appl. Mech, Vol. VIa/2, 726-728 (1986)
[38] Naghdi, P. M., The Theory of Shells, (Handbuch der Physik, Mechanics of Solids II (1972), Springer: Springer Barcelona) · Zbl 0154.22602
[39] Ogden, R. W., Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids, (Proc. R. Soc. Lond. A, 328 (1972)), 567-583 · Zbl 0245.73032
[40] Ogden, R. W., Non-Linear Elastic Deformations, (Mathematics and its Applications (1984), Ellis Horwood Limited: Ellis Horwood Limited Berlin) · Zbl 0541.73044
[41] Parisch, H., An investigation of a finite rotation four node assumed strain element, Int. J. Numer. Methods Engrg., 31, 127-150 (1991) · Zbl 0825.73783
[42] Parisch, H., A continuum-based shell theory for non-linear applications, Int. J. Numer. Methods Engrg., 38, 1855-1883 (1995) · Zbl 0826.73041
[43] Pietraszkiewiecz, W.; Badur, J., Finite rotations in the description of continuum deformation, Int. J. Engrg. Sci., 21, 1097-1115 (1983) · Zbl 0521.73033
[44] Piltner, R.; Taylor, R. L., A quadrilateral mixed finite element with two enhanced strain modes, Int. J. Numer. Methods Engrg., 38, 1783-1808 (1995) · Zbl 0824.73073
[45] Ramm, E., Geometrisch nichtlineare Elastostatik und Finite Elemente, (Habilitation (1976), Institut für Baustatik, Universität Stuttgart: Institut für Baustatik, Universität Stuttgart Chichester), Bericht Nr. 76-2
[46] Reese, S.; Wriggers, P., A finite element method for stability problems in finite elasticity, Int. J. Numer. Methods Engrg., 38, 1171-1200 (1995) · Zbl 0823.73070
[47] Roehl, D.; Ramm, E., Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept, Int. J. Solid Struct, 33, 3215-3237 (1996) · Zbl 0926.74109
[48] Sansour, C., A theory and finite element formulation of shells at finite deformations involving thickness change: Circumventing the use of a rotation tensor, Arch. Appl. Mech., 65, 194-216 (1995) · Zbl 0827.73044
[49] Schoop, H., Oberfächenorientierte Schaldnteorien Endlicher Verschiebungen, Archive Appl. Mech., 56, 427-437 (1986) · Zbl 0595.73061
[50] Schweizerhof, K.; Ramm, E., Displacement dependent pressure loads in nonlinear finite element analyses, Comput. Struct., 18, 1099-1114 (1984) · Zbl 0554.73069
[51] Seifert, B., Zur Theorie und Numerik Finiter Elastoplastischer Deformationen von Schalenstrukturen, (Dissertation (1996), Institut für Buamechanik und Numerische Mechanik der Universität Hannover), Bericht Nr. F 96/2
[52] Sewell, M. J., On configuration-dependent loading, Arch. Rat. Mech. Anal., 23, 327-351 (1966) · Zbl 0166.43406
[53] Simo, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Methods Appl. Mech. Engrg., 99, 61-112 (1992) · Zbl 0764.73089
[54] Simo, J. C., On a stress resultant geometrically exact shell model. Part VII. Shell intersections with 5/6-DOF finite element formulations, Comput. Methods Appl. Mech. Engrg., 108, 319-339 (1993) · Zbl 0855.73074
[55] Simo, J. C.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 33, 1413-1449 (1992) · Zbl 0768.73082
[56] Simo, J. C.; Armero, F.; Taylor, R. L., Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems, Comput. Methods Appl. Mech. Engrg., 110, 359-386 (1993) · Zbl 0846.73068
[57] Simo, J. C.; Fox, D. D., On a stress resultant geometrically exact shell model. Part I. Formulation and optimal parametrization, Comput. Methods Appl. Mech. Engrg., 72, 267-304 (1989) · Zbl 0692.73062
[58] Simo, J. C.; Fox, D. D.; Rifai, M. S., On a stress resultant geometrically exact shell model. Part III. Computational aspects of the nonlinear theory, Comput. Methods Appl. Mech. Engrg., 79, 21-70 (1990) · Zbl 0746.73015
[59] Simo, J. C.; Kennedy, J. G., On a stress resultant geometrically exact shell model. Part V. Nonlinear plasticity: formulation and integration algorithms, Comput. Methods Appl. Mech. Engrg., 96, 133-171 (1992) · Zbl 0754.73042
[60] Simo, J. C.; Miehe, C., Coupled associative thermoplasticity at finite strains, Formulation, numerical analysis and implementation. Formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 41-104 (1992) · Zbl 0764.73088
[61] Simo, J. C.; Ortiz, M., A unified approach to finite deformation elastoplasticity based on the use of hyperelastic constitutive equations, Comput. Methods Appl. Mech. Engrg., 49, 201-215 (1985) · Zbl 0538.73054
[62] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222
[63] Simo, J. C.; Rifai, M. S.; Fox, D. D., On a stress resultant geometrically exact shell model. Part IV. Variable thickness shells with through-the-tickness stretching, Comput. Methods Appl. Mech. Engrg., 81, 91-126 (1990) · Zbl 0746.73016
[64] Soric, J.; Montag, U.; Krätzig, W. B., An efficient formulation of integration algorithms for elastoplastic shell analysis based on layered finite element approach, Comput. Methods Appl. Mech. Engrg., 148, 315-328 (1997) · Zbl 0918.73128
[65] Taylor, R. L.; Beresford, P. J.; Wilson, E. L., A non-conforming element for stress analysis, Int. J. Numer. Methods Engrg.. Int. J. Numer. Methods Engrg., Int. J. Numer. Methods Engrg., Vol. III/3, 1211-1219 (1976) · Zbl 0338.73041
[66] Truesdell, C.; Noll, W., The Nonlinear Field Theories of Mechanics, (Handbuch der Physik (1965), Springer) · Zbl 0779.73004
[67] Wagner, W.; Gruttmann, F., A simple finite rotation formulation for composite shell elements, Engrg. Comput., 11, 145-176 (1994)
[68] Washizu, K., Variational Methods in Elasticity and Plasticity (1982), Pergamon Press: Pergamon Press Berlin · Zbl 0164.26001
[69] Weber, G.; Anand, L., Finite deformation, constitutive equations and a time integration procedure for isotropic hyperelastic-viscoelastic solids, Comput. Methods Appl. Mech. Engrg., 79, 173-202 (1990) · Zbl 0731.73031
[70] Wilson, E. L.; Taylor, R. L.; Doherty, E. P.; Ghaboussi, J., Incompatible displacements models, (Fenves, S. J.; Perrone, N.; Robinson, A. R.; Schnobrich, W. C., Numerical and Computer Models in Structural Mechanics (1973), Academic Press: Academic Press Oxford), 43-57
[71] Wriggers, P.; Eberlein, R.; Gruttmann, F., An axisymmetrical quasi-Kirchhoff-type shell element for large plastic deformations, Arch. Appl. Mech., 65, 465-477 (1995) · Zbl 0836.73077
[72] Wriggers, P.; Eberlein, R.; Reese, S., A comparison of three-dimensional continuum and shell elements for finite plasticity, Int. J. Solid Struct., 33, 3309-3326 (1996) · Zbl 0913.73071
[73] Wriggers, P.; Gruttmann, F., Thin shells with finite rotations formulated in Biot stresses: theory and finite element formulation, Int. J. Numer. Methods Engrg., 36, 2049-2071 (1993) · Zbl 0779.73074
[74] Wriggers, P.; Hueck, U., A formulation of the QS6 element for large elastic deformations, Int. J. Numer. Methods Engrg., 39, 1437-1454 (1996) · Zbl 0865.73069
[75] Wriggers, P.; Korelc, J., On enhanced strain methods for small and finite deformations of solids, Comput. Mech., 18, 413-428 (1996) · Zbl 0894.73179
[76] Wriggers, P.; Reese, S., A note on enhanced strain methods for large deformations, Comput. Methods Appl. Mech. Engrg., 135, 201-209 (1996) · Zbl 0893.73072
[77] Zienkiewicz, O. C.; Taylor, R. L., (The Finite Element Method, Vol. 1 (1989), McGraw-Hill: McGraw-Hill New York)
[78] Zienkiewicz, O. C.; Taylor, R. L.; Too, J. M., Reduced integration technique in general analysis of plates and shells, Int. J. Numer. Methods Engrg., 3, 275-290 (1971) · Zbl 0253.73048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.