×

Multiplication theorems for generalized and double-index Bessel functions. (English) Zbl 0956.33002

In this paper the following generating functions: \[ \exp\left[{x \over 2}\left(t- {1\over t}\right)+ {y\over 2}\left(t^2\tau- {1\over t^2\tau} \right)\right]= \sum^\infty_{n= -\infty}t^nJ_n(x,y; \tau)\tag{*} \]
\[ \exp\left\{ {x\over 2}\left[\left( u-{1\over u}\right)+\left( v-{1\over v}\right) +\left(uv-{1\over uv}\right) \right]\right\} =\sum^\infty_{n= -\infty} \sum^\infty_{m=-\infty} u^mv^nJ_{m,n}(x) \tag{**} \] are considered [see G. Dattoli, A. Torre, S. Lorenzutta and G. Maino, Ann. Numer. Math. 2, No. 1-4, 211-232 (1995; Zbl 0851.33001)], where \(J_n(x,y;\tau)\) is the two-variable one-parameter generalized cylinder function and \(J_{m,n}(x)\) is the double-index Bessel function introduced by P. Humbert through the expansion (**) [Acta Pont. Accad. Sci. Novi Lyncaei 87, 323-331 (1934; Zbl 0009.11503)]. Making use of (*) as well as the two-variable generalized Hermite polynomials \(H_n(x, y)\) defined by the generating function \(\exp(xt+yt^2)\) (loc. cit.) the authors obtain a multiplication theorem for \(J_n(\lambda x,\mu y;\tau)\). Moreover, starting from two suitable different expressions of (**) and using the Hermite-type polynomials \(H_{r,s}(x)\) defined by certain series (loc. cit.) they also establish two other multiplication theorems for the double-index Bessel function \(J_{m,n}(\lambda x)\).

MSC:

33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
33C50 Orthogonal polynomials and functions in several variables expressible in terms of special functions in one variable
Full Text: DOI

References:

[1] Al-Zamel, A.; Kalla, S. L., On the Epstein-Hubbel generalized elliptic-type integral and its generalizations, Appl. Math. Comput., 77, 9-32 (1996) · Zbl 0845.33011
[3] Dattoli, G.; Lorenzutta, S.; Maino, G.; Torre, A.; Voykov, G.; Chiccoli, C., Theory of two-index Bessel functions and applications to physical problems, J. Math. Phys., 35, 3636-3649 (1994) · Zbl 0815.33002
[4] Dattoli, G.; Torre, A.; Lorenzutta, S.; Maino, G.; Chiccoli, C., Theory of generalized Bessel functions II, Nuovo Cimento, B106, 21-51 (1991)
[5] Dattoli, G.; Torre, A.; Lorenzutta, S.; Maino, G., Generalized forms of Bessel functions and Hermite polynomials, Ann. Numer. Math., 2, 211-232 (1995) · Zbl 0851.33001
[6] Dattoli, G.; Riviera, A.; Torre, A., Lectures on Free Electron Laser Theory and Related Topics (1993), World Scientific: World Scientific NJ
[7] Eredelyi (Ed.), A., Higher Transcendental Functions, 3 Vols. (1953-1955), McGraw-Hill: McGraw-Hill New York · Zbl 0051.30303
[8] Kalla, S. L., The Hubbell rectangular source integral and its generalizations, Radiat. Phys. Chem., 24, 775-781 (1993)
[9] Watson, G. N., A Treatise on the Theory of Bessel Functions (1952), Cambridge University Press: Cambridge University Press London · Zbl 0849.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.