×

Center manifolds for smooth invariant manifolds. (English) Zbl 0953.34038

Summary: The authors study dynamics of flows generated by smooth vector fields in \({\mathbb{R}}^n\) in the vicinity of an invariant and closed smooth manifold \(Y\). By applying the Hadamard graph transform technique, they show that there exists an invariant manifold (called a center manifold of \(Y\)) based on the information of the linearization along \(Y\), which contains every locally bounded solution and is persistent under small perturbations.

MSC:

34C45 Invariant manifolds for ordinary differential equations
37D10 Invariant manifold theory for dynamical systems
34C30 Manifolds of solutions of ODE (MSC2000)
Full Text: DOI

References:

[1] Valentine Afraimovich, Shui-Nee Chow, and Weishi Liu, Lorenz-type attractors from codimension one bifurcation, J. Dynam. Differential Equations 7 (1995), no. 2, 375 – 407. · Zbl 0839.34064 · doi:10.1007/BF02219362
[2] Afraimovich, V., and Shilnikov, L. (1974). On Some Global Bifurcations Connected with the Disappearance of a Fixed Point of Saddle-node Type. Doklady Akad. Nauk. SSSR 219, 1281-1285 (in Russian). English translation in Sov. Math. Doklady.
[3] R. W. Dickey , Nonlinear elasticity, Academic Press [Subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Publication No. 31 of the Mathematics Research Center, University of Wisconsin, Madison, Wis. · Zbl 0279.00016
[4] Peter W. Bates and Christopher K. R. T. Jones, Invariant manifolds for semilinear partial differential equations, Dynamics reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester, 1989, pp. 1 – 38. · Zbl 0674.58024
[5] Bates, P., Lu, K. and Zeng, C. Existence and persistence of invariant manifolds for semiflows in Banach space. Mem. Amer. Math. Soc. to appear. · Zbl 1023.37013
[6] I. U. Bronstein and A. Ya. Kopanskiĭ, Smooth invariant manifolds and normal forms, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 7, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. · Zbl 0974.34001
[7] Jack Carr, Applications of centre manifold theory, Applied Mathematical Sciences, vol. 35, Springer-Verlag, New York-Berlin, 1981. · Zbl 0464.58001
[8] N. Chafee, Erratum: ”A bifurcation problem for a functional differential equation of finitely retarded type” (J. Math. Anal. Appl. 35 (1971), 312 – 348), J. Math. Anal. Appl. 47 (1974), 671 – 672. · Zbl 0284.34073 · doi:10.1016/0022-247X(74)90016-X
[9] Xu-Yan Chen, Jack K. Hale, and Bin Tan, Invariant foliations for \?\textonesuperior semigroups in Banach spaces, J. Differential Equations 139 (1997), no. 2, 283 – 318. · Zbl 0994.34047 · doi:10.1006/jdeq.1997.3255
[10] A. Chenciner and G. Iooss, Bifurcations de tores invariants, Arch. Rational Mech. Anal. 69 (1979), no. 2, 109 – 198 (French). · Zbl 0405.58033 · doi:10.1007/BF00281175
[11] Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 251, Springer-Verlag, New York-Berlin, 1982. · Zbl 0487.47039
[12] Shui-Nee Chow, Cheng Zhi Li, and Duo Wang, Normal forms and bifurcation of planar vector fields, Cambridge University Press, Cambridge, 1994. · Zbl 0804.34041
[13] Shui-Nee Chow and Kening Lu, \?^{\?} centre unstable manifolds, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 303 – 320. · Zbl 0707.34039 · doi:10.1017/S0308210500014682
[14] Shui-Nee Chow and Kening Lu, Invariant manifolds and foliations for quasiperiodic systems, J. Differential Equations 117 (1995), no. 1, 1 – 27. · Zbl 0821.34044 · doi:10.1006/jdeq.1995.1046
[15] Shui-Nee Chow and Yingfei Yi, Center manifold and stability for skew-product flows, J. Dynam. Differential Equations 6 (1994), no. 4, 543 – 582. · Zbl 0809.34057 · doi:10.1007/BF02218847
[16] Stephen P. Diliberto, Perturbation theorems for periodic surfaces. I. Definitions and main theorems, Rend. Circ. Mat. Palermo (2) 9 (1960), 265 – 299. , https://doi.org/10.1007/BF02851248 Stephen P. Diliberto, Perturbation theorems for periodic surfaces. II, Rend. Circ. Mat. Palermo (2) 10 (1961), 111 – 161. · Zbl 0099.29402
[17] F. Dumortier, R. Roussarie, J. Sotomayor, and H. Żołądek, Bifurcations of planar vector fields, Lecture Notes in Mathematics, vol. 1480, Springer-Verlag, Berlin, 1991. Nilpotent singularities and Abelian integrals. · Zbl 0755.58002
[18] Neil Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971/1972), 193 – 226. · Zbl 0246.58015 · doi:10.1512/iumj.1971.21.21017
[19] Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53 – 98. · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[20] Ciprian Foias, George R. Sell, and Roger Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), no. 2, 309 – 353. · Zbl 0643.58004 · doi:10.1016/0022-0396(88)90110-6
[21] John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. · Zbl 0515.34001
[22] Hadamard, J. (1901). Sur Líteration et les solutions asymptotiques des equations differentielles. Bull. Soc. Math. France 29, 224-228. · JFM 32.0314.01
[23] Jack K. Hale, Integral manifolds of perturbed differential systems, Ann. of Math. (2) 73 (1961), 496 – 531. · Zbl 0163.32804 · doi:10.2307/1970314
[24] Jack K. Hale, Ordinary differential equations, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1969. Pure and Applied Mathematics, Vol. XXI. · Zbl 0433.34003
[25] Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. · Zbl 0456.35001
[26] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. · Zbl 0355.58009
[27] Ale Jan Homburg, Global aspects of homoclinic bifurcations of vector fields, Mem. Amer. Math. Soc. 121 (1996), no. 578, viii+128. · Zbl 0862.34042 · doi:10.1090/memo/0578
[28] Russell A. Johnson, Concerning a theorem of Sell, J. Differential Equations 30 (1978), no. 3, 324 – 339. · Zbl 0416.58021 · doi:10.1016/0022-0396(78)90004-9
[29] C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations 108 (1994), no. 1, 64 – 88. · Zbl 0796.34038 · doi:10.1006/jdeq.1994.1025
[30] Al Kelley, The stable, center-stable, center, center-unstable, unstable manifolds, J. Differential Equations 3 (1967), 546 – 570. · Zbl 0173.11001 · doi:10.1016/0022-0396(67)90016-2
[31] J. Kurzweil, Invariant manifolds of differential systems, Proceedings of the Fourth Conference on Nonlinear Oscillations (Prague, 1967), Academia, Prague, 1968, pp. 41 – 49.
[32] Y. Li, David W. McLaughlin, Jalal Shatah, and S. Wiggins, Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation, Comm. Pure Appl. Math. 49 (1996), no. 11, 1175 – 1255. , https://doi.org/10.1002/(SICI)1097-0312(199611)49:113.3.CO;2-B · Zbl 0866.35112
[33] Lyapunov, A.M. (1947). Problème géneral de la stabilité du mouvement. Annals Math. Studies 17, Princeton, N.J. (originally published in Russian, 1892).
[34] Ricardo Mañé, Persistent manifolds are normally hyperbolic, Trans. Amer. Math. Soc. 246 (1978), 261 – 283. · Zbl 0362.58014
[35] Alexander Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci. 10 (1988), no. 1, 51 – 66. · Zbl 0647.35034 · doi:10.1002/mma.1670100105
[36] Nash, J. (1956). The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20-63. · Zbl 0070.38603
[37] Kenneth Palmer, On the stability of the center manifold, Z. Angew. Math. Phys. 38 (1987), no. 2, 273 – 278 (English, with German summary). · Zbl 0614.58035 · doi:10.1007/BF00945412
[38] Perron, O. (1928). Über stabilität und asymptotisches verhalten der integrale von differentialgleichungssystemen. Math. Z. 29, 129-160. · JFM 54.0456.04
[39] V. A. Pliss, A reduction principle in the theory of stability of motion, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1297 – 1324 (Russian). · Zbl 0131.31505
[40] Pliss, V.A. and Sell, G. (1996). Approximation dynamics and the stability of invariant sets. IMA Preprint Series #1393. · Zbl 0894.34048
[41] Krzysztof P. Rybakowski, An abstract approach to smoothness of invariant manifolds, Appl. Anal. 49 (1993), no. 1-2, 119 – 150. · Zbl 0736.35016 · doi:10.1080/00036819308840170
[42] Robert J. Sacker, A perturbation theorem for invariant Riemannian manifolds, Differential Equations and Dynamical Systems (Proc. Internat. Sympos., Mayaguez, P.R., 1965) Academic Press, New York, 1967, pp. 43 – 54.
[43] Robert J. Sacker and George R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), no. 3, 320 – 358. · Zbl 0372.34027 · doi:10.1016/0022-0396(78)90057-8
[44] Kunimochi Sakamoto, Estimates on the strength of exponential dichotomies and application to integral manifolds, J. Differential Equations 107 (1994), no. 2, 259 – 279. · Zbl 0811.34007 · doi:10.1006/jdeq.1994.1012
[45] Sandstede, B. (1993). Verzweigungstheorie homokliner verdopplungen. Report No. 7, Institut für Angewandte Analysis und Stochastik, Germany.
[46] James F. Selgrade, Isolated invariant sets for flows on vector bundles, Trans. Amer. Math. Soc. 203 (1975), 359 – 390. · Zbl 0265.58004
[47] Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. · Zbl 0606.58003
[48] Jan Sijbrand, Properties of center manifolds, Trans. Amer. Math. Soc. 289 (1985), no. 2, 431 – 469. · Zbl 0577.34039
[49] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747 – 817. · Zbl 0202.55202
[50] Michael Spivak, A comprehensive introduction to differential geometry. Vol. One, Published by M. Spivak, Brandeis Univ., Waltham, Mass., 1970. Michael Spivak, A comprehensive introduction to differential geometry. Vol. III, Publish or Perish, Inc., Boston, Mass., 1975. Michael Spivak, A comprehensive introduction to differential geometry. Vol. II, Published by M. Spivak, Brandeis Univ., Waltham, Mass., 1970.
[51] Vanderbauwhede, A. (1989). Center manifolds, normal forms and elementary bifurcations. Dyn. Reported, 2, 89-169. · Zbl 0677.58001
[52] A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynamics reported: expositions in dynamical systems, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 1, Springer, Berlin, 1992, pp. 125 – 163. · Zbl 0751.58025
[53] A. Vanderbauwhede and S. A. van Gils, Center manifolds and contractions on a scale of Banach spaces, J. Funct. Anal. 72 (1987), no. 2, 209 – 224. · Zbl 0621.47050 · doi:10.1016/0022-1236(87)90086-3
[54] Whitney, H. (1936). Differential manifolds. Ann. Math., (2)37, 645-680. · JFM 62.1454.01
[55] Stephen Wiggins, Normally hyperbolic invariant manifolds in dynamical systems, Applied Mathematical Sciences, vol. 105, Springer-Verlag, New York, 1994. With the assistance of György Haller and Igor Mezić. · Zbl 0812.58001
[56] Yingfei Yi, A generalized integral manifold theorem, J. Differential Equations 102 (1993), no. 1, 153 – 187. · Zbl 0780.34026 · doi:10.1006/jdeq.1993.1026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.