×

Hamiltonian time evolution for general relativity. (English) Zbl 0949.83010

Summary: Hamiltonian time evolution in terms of an explicit parameter time is derived for general relativity, even when the constraints are not satisfied, from the Arnowitt-Deser-Misner-Teitelboim-Ashtekar action in which the slicing density \(\alpha(x, t)\) is freely specified while the lapse \(N = \alpha g^{1/2}\) is not. The constraint “algebra” becomes a well-posed evolution system for the constraints; this system is the twice-contracted Bianchi identity when \(R_{ij} = 0\). The Hamiltonian constraint is an initial value constraint which determines \(g^{1/2}\) and hence \(N\), given \(\alpha\).

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C40 Gravitational energy and conservation laws; groups of motions

References:

[1] C. Teitelboim, Phys. Rev. D 25 pp 3159– (1982) · doi:10.1103/PhysRevD.25.3159
[2] C. Teitelboim, Phys. Rev. D 28 pp 297– (1983) · doi:10.1103/PhysRevD.28.297
[3] A. Ashtekar, Phys. Rev. D 36 pp 1587– (1987) · doi:10.1103/PhysRevD.36.1587
[4] R. Arnowitt, in: Gravitation: An Introduction to Current Research, (1962)
[5] P. A. M. Dirac, Proc. R. Soc. London A 246 pp 333– (1958) · Zbl 0080.41403 · doi:10.1098/rspa.1958.0142
[6] P. A. M. Dirac, Phys. Rev. 114 pp 924– (1959) · Zbl 0085.42402 · doi:10.1103/PhysRev.114.924
[7] Y. Choquet-Bruhat, Commun. Math. Phys. 89 pp 269– (1983) · Zbl 0521.53034 · doi:10.1007/BF01211832
[8] S. Frittelli, Commun. Math. Phys. 166 pp 221– (1994) · Zbl 0812.35147 · doi:10.1007/BF02112314
[9] H. Friedrich, Classical Quantum Gravity 13 pp 1451– (1996) · Zbl 0851.58044 · doi:10.1088/0264-9381/13/6/014
[10] Y. Choquet-Bruhat, C.R. Acad. Sci. Paris I, Math. 321 pp 1089– (1995)
[11] A. Abrahams, in: Proceedings of the 18th Texas Symposium on Relativistic Astrophysics, (1998)
[12] A. Anderson, Topol. Methods Nonlinear Anal. 10 pp 353– (1997)
[13] A. Abrahams, Phys. Rev. Lett. 75 pp 3377– (1995) · Zbl 1020.83503 · doi:10.1103/PhysRevLett.75.3377
[14] A. Abrahams, C.R. Acad. Sci. Paris II, Mec. Phys. Chim. Astron. 323 pp 835– (1996)
[15] Y. Choquet-Bruhat, Banach Center Publ. 41 pp 119– (1997)
[16] A. Abrahams, Classical Quantum Gravity 14 pp A9– (1997) · Zbl 0866.58059 · doi:10.1088/0264-9381/14/1A/002
[17] A. Ashtekar, in: New Perspectives in Canonical Gravity (1988) · Zbl 0704.53056
[18] H. Friedrich, Commun. Math. Phys. 100 pp 525– (1985) · Zbl 0588.35058 · doi:10.1007/BF01217728
[19] J. W. York, in: Sources of Gravitational Radiation, (1979)
[20] J. W. York, J. Math. Phys. 14 pp 456– (1973) · Zbl 0259.53014 · doi:10.1063/1.1666338
[21] N. O’Murchadha, Phys. Rev. D 10 pp 428– (1974) · doi:10.1103/PhysRevD.10.428
[22] N. O’Murchadha, Phys. Rev. D 10 pp 437– (1974) · doi:10.1103/PhysRevD.10.437
[23] Y. Choquet-Bruhat, in: General Relativity and Gravitation, (1980) · Zbl 1164.83001
[24] A. Lichnerowicz, J. Math. Pures Appl. 23 pp 37– (1944)
[25] Y. Choquet(Foures)-Bruhat, J. Rat. Mech. Anal. 5 pp 951– (1956)
[26] S. Frittelli, Phys. Rev. D 55 pp 5992– (1997) · doi:10.1103/PhysRevD.55.5992
[27] Y. Choquet-Bruhat, C.R. Acad. Sci. Paris I, Math. 303 pp 259– (1986)
[28] C. Teitelboim, Ann. Phys. (N.Y.) 79 pp 542– (1973) · doi:10.1016/0003-4916(73)90096-1
[29] C. Teitelboim, Phys. Rev. Lett. 38 pp 1106– (1977) · doi:10.1103/PhysRevLett.38.1106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.