×

Theoretical comparisons of block bootstrap methods. (English) Zbl 0945.62049

Summary: We compare the asymptotic behavior of some common block bootstrap methods based on nonrandom as well as random block lengths. It is shown that, asymptotically, bootstrap estimators derived using any of the methods considered in the paper have the same amount of bias to the first order. However, the variances of these bootstrap estimators may be different even in the first order.
Expansions for the bias, the variance and the mean-squared error of different block bootstrap variance estimators are obtained. It follows from these expansions that using overlapping blocks is to be preferred over nonoverlapping blocks and that using random block lengths typically leads to mean-squared errors larger than those for nonrandom block lengths.

MSC:

62G09 Nonparametric statistical resampling methods
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI

References:

[1] Bartlett, M. S. (1946). On the theoretical specification of sampling properties of autocorrelated time series. J. Roy. Statist. Soc. Suppl. 8 27-41. · Zbl 0063.00228 · doi:10.2307/2983611
[2] Bhattacharya, R. N. and Ghosh, J. K. (1978). On the validity of the formal Edgeworth expansion. Ann. Statist. 6 434-451. · Zbl 0396.62010 · doi:10.1214/aos/1176344134
[3] B ühlman, P. (1994). Blockwise bootstrapped empirical process for stationary sequences. Ann. Statist. 22 995-1012. · Zbl 0806.62032 · doi:10.1214/aos/1176325508
[4] B ühlman, P. and K ünsch, H. R. (1994). Block length selection in the bootstrap for time series. Research Report 72, Seminar f ür Statistik, ETH, Z ürich.
[5] Bustos, O. (1982). General M-estimates for contaminated pth order autoregressive processes: consistency and asymptotic normality. Z. Wahrsch. Verw. Gebiete 59 491-504. · Zbl 0482.62080 · doi:10.1007/BF00532805
[6] Carlstein, E. (1986). The use of subseries methods for estimating the variance of a general statistic from a stationary time series. Ann. Statist. 14 1171-1179. · Zbl 0602.62029 · doi:10.1214/aos/1176350057
[7] Carlstein, E., Do, K-A., Hall, P., Hesterberg, T. and K ünsch, H. R. (1995). Matched-block bootstrap for dependent data. Research Report 74, Seminar f ür Statistik, ETH, Z ürich. · Zbl 0920.62106
[8] Davison, A. C. and Hall, P. (1993). On Studentizing and blocking methods for implementing the bootstrap with dependent data. Austral. J. Statist. 35 215-224. · Zbl 0791.62045 · doi:10.1111/j.1467-842X.1993.tb01327.x
[9] G ötze, F. and K ünsch, H. R. (1996). Blockwise bootstrap for dependent observations: higher order approximations for Studentized statistics. Ann. Statist. 24 1914-1933. · Zbl 0906.62040
[10] Hall, P. (1985). Resampling a coverage pattern. Stochastic Process. Appl. 20 231-246. · Zbl 0587.62081 · doi:10.1016/0304-4149(85)90212-1
[11] Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York. · Zbl 0744.62026
[12] Hall, P., Horowitz, J. L. and Jing, B. (1995). On blocking rules for the bootstrap with dependent data. Biometrika 82 561-574. JSTOR: · Zbl 0830.62082 · doi:10.1093/biomet/82.3.561
[13] Ibragimov, I. A. and Hasminskii, R. Z. (1981). Statistical Estimation: Asymptotic Theory. Springer, New York. · Zbl 0705.62039
[14] K ünsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann. Statist. 17 1217-1261. · Zbl 0684.62035 · doi:10.1214/aos/1176347265
[15] Lahiri, S. N. (1991). Second order optimality of stationary bootstrap. Statist. Probab. Lett. 11 335-341. · Zbl 0722.62016 · doi:10.1016/0167-7152(91)90045-S
[16] Lahiri, S. N. (1995). On the asymptotic behaviour of the moving block bootstrap for normalized sums of heavy-tail random variables. Ann. Statist. 23 1331-1349. Lahiri, S. N. (1996a). On Edgeworth expansion and moving block bootstrap for Studentized Mestimators in multiple linear regression models. J. Multivariance Analysis. 56 42-59. Lahiri, S. N. (1996b). On empirical choice of the optimal block size for block bootstrap methods. Preprint. Dept. Statistics, Iowa State Univ., Ames. · Zbl 0841.62037 · doi:10.1214/aos/1176324711
[17] Lahiri, S. N. (1997). On second-order properties of the stationary bootstrap method for Studentized statistics. Preprint. Dept. Statistics, Iowa State Univ., Ames. · Zbl 1069.62527
[18] Liu, R. Y. and Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence. In Exploring the Limits of Bootstrap (R. Lepage and L. Billard, eds.) 225-248. Wiley, New York. · Zbl 0838.62036
[19] Naik-Nimbalkar, U. V. and Rajarshi, M. B. (1994). Validity of blockwise bootstrap for empirical processes with stationary observations. Ann. Statist. 22 980-994. · Zbl 0808.62043 · doi:10.1214/aos/1176325507
[20] Politis, D. and Romano, J. P. (1992). A circular block resampling procedure for stationary data. In Exploring the Limits of Bootstrap (R. Lepage and L. Billard, eds.) 263-270. Wiley, New York. · Zbl 0845.62036
[21] Politis, D. and Romano, J. P. (1994). The stationary bootstrap. J. Amer. Statist. Assoc. 89 1303- 1313. JSTOR: · Zbl 0824.60006 · doi:10.2307/2290993
[22] Priestley, M. B. (1981). Spectral Analysis and Time Series 1. Academic Press, New York. · Zbl 0537.62075
[23] Rudin, W. (1985). Real and Complex Analysis. McGraw-Hill, New York. · Zbl 0613.26001
[24] Shao, Q. M. and Yu, H. (1993). Bootstrapping the sample means for stationary mixing sequences. Stochastic Process. Appl. 48 175-190. · Zbl 0802.62048 · doi:10.1016/0304-4149(93)90113-I
[25] Woodroofe, M. B. (1982). Nonlinear Renewal Theory in Sequential Analysis. SIAM, Philadelphia. · Zbl 0487.62062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.