×

On the quantization of charged black holes. (English) Zbl 0943.83036

Summary: The Wheeler-DeWitt equation for the wave function \(\Psi\) of the Schwarzschild black hole has been derived by Tomimatsu in the form of a Schrödinger equation, valid on the apparent horizon, using the two-dimensional Hamiltonian formalism of Hajicek and the radiating Vaidya metric. Here, the analysis is generalized to the Reissner-Nordström black hole. At constant charge \(Q\), the evaporation rate is calculated from the solution for \(\Psi\) to be \(\dot M = -k^2 r_+^{-2}\), where \(k\) is a constant and \(r_{\pm} = M \pm \sqrt{M^2 - Q^2}\) are the radii of the outer event horizon and inner Cauchy horizon. In the extremal limit \(M\rightarrow Q\) however, the Hawking temperature \(T_H= (r_+- r_-)/ 4\pi r_+^2\) tends to zero, suggesting, when the back reaction is taken into account, that the evaporation cannot occur this way and in agreement with the known discharging process of the hole via the Schwinger electron-positron pair-production mechanism. The more general charged dilaton black holes obtained from the theory \(L_4= [R_4- 2(\nabla \Phi)^2 - e^{-2 a\Phi} F^2] / 16\pi\) are also discussed, and it is explained why this quantization procedure cannot be applied when \(a\) is non-zero.

MSC:

83C57 Black holes
81T20 Quantum field theory on curved space or space-time backgrounds
83C47 Methods of quantum field theory in general relativity and gravitational theory
80A10 Classical and relativistic thermodynamics
83F05 Relativistic cosmology
Full Text: DOI

References:

[1] DOI: 10.1016/0550-3213(82)90170-5 · doi:10.1016/0550-3213(82)90170-5
[2] DOI: 10.1016/0550-3213(88)90006-5 · doi:10.1016/0550-3213(88)90006-5
[3] DOI: 10.1002/andp.19163550905 · doi:10.1002/andp.19163550905
[4] Garfinkle D., Phys. Rev. 43 pp 3140– (1991)
[5] DOI: 10.1103/PhysRevLett.54.502 · doi:10.1103/PhysRevLett.54.502
[6] DOI: 10.1016/0370-2693(94)91293-9 · doi:10.1016/0370-2693(94)91293-9
[7] DOI: 10.1016/S0370-1573(96)00035-X · doi:10.1016/S0370-1573(96)00035-X
[8] DOI: 10.1016/0370-2693(92)91220-4 · doi:10.1016/0370-2693(92)91220-4
[9] DOI: 10.1142/S0218271894000721 · doi:10.1142/S0218271894000721
[10] DOI: 10.1142/S021773239700100X · Zbl 1020.83679 · doi:10.1142/S021773239700100X
[11] Page D. N., Phys. Rev. 13 pp 198– (1976)
[12] DOI: 10.1103/PhysRev.82.664 · Zbl 0043.42201 · doi:10.1103/PhysRev.82.664
[13] DOI: 10.1038/247530a0 · doi:10.1038/247530a0
[14] DOI: 10.1007/BF01609829 · doi:10.1007/BF01609829
[15] DOI: 10.1002/andp.19273892002 · JFM 53.0845.04 · doi:10.1002/andp.19273892002
[16] Hajicek P., Phys. Rev. 30 pp 1178– (1984) · doi:10.1103/PhysRevB.30.1178
[17] Vaidya P. C., Proc. Indian Acad. Sci. 33 pp 264– (1951)
[18] DOI: 10.1103/PhysRev.137.B1364 · doi:10.1103/PhysRev.137.B1364
[19] DOI: 10.1142/S0217751X9200185X · doi:10.1142/S0217751X9200185X
[20] DOI: 10.1142/S0218271892000227 · Zbl 0941.83527 · doi:10.1142/S0218271892000227
[21] DOI: 10.1038/248030a0 · Zbl 1370.83053 · doi:10.1038/248030a0
[22] DOI: 10.1016/0550-3213(92)90254-9 · Zbl 0938.83503 · doi:10.1016/0550-3213(92)90254-9
[23] DOI: 10.1098/rspa.1962.0161 · Zbl 0106.41903 · doi:10.1098/rspa.1962.0161
[24] DOI: 10.1103/PhysRev.177.1929 · doi:10.1103/PhysRev.177.1929
[25] Lapchinsky V. G., Acta Phys. Polonica 10 pp 1041– (1979)
[26] DOI: 10.1142/S0217751X92002933 · Zbl 0954.81528 · doi:10.1142/S0217751X92002933
[27] DOI: 10.1088/0264-9381/14/1/002 · Zbl 0867.53071 · doi:10.1088/0264-9381/14/1/002
[28] DOI: 10.1002/andp.19263840804 · JFM 52.0967.02 · doi:10.1002/andp.19263840804
[29] DOI: 10.1007/BF01507634 · JFM 52.0967.01 · doi:10.1007/BF01507634
[30] DOI: 10.1143/PTPS.69.80 · doi:10.1143/PTPS.69.80
[31] DOI: 10.1103/PhysRev.115.485 · Zbl 0099.43102 · doi:10.1103/PhysRev.115.485
[32] DOI: 10.1016/0031-9163(62)91369-0 · Zbl 0103.23703 · doi:10.1016/0031-9163(62)91369-0
[33] DOI: 10.1126/science.239.4843.992 · doi:10.1126/science.239.4843.992
[34] DOI: 10.1103/PhysRevLett.34.1472 · doi:10.1103/PhysRevLett.34.1472
[35] DOI: 10.1142/S0217732397002107 · Zbl 0906.53073 · doi:10.1142/S0217732397002107
[36] DOI: 10.1142/S0217732397001151 · Zbl 1020.83569 · doi:10.1142/S0217732397001151
[37] DOI: 10.1098/rspa.1976.0105 · doi:10.1098/rspa.1976.0105
[38] DOI: 10.1093/mnras/179.3.457 · doi:10.1093/mnras/179.3.457
[39] DOI: 10.1142/S0217732395000685 · doi:10.1142/S0217732395000685
[40] DOI: 10.1007/BF02757029 · doi:10.1007/BF02757029
[41] DOI: 10.1016/0370-2693(96)00345-0 · Zbl 1376.83026 · doi:10.1016/0370-2693(96)00345-0
[42] DOI: 10.1103/PhysRevLett.71.2367 · Zbl 0972.83565 · doi:10.1103/PhysRevLett.71.2367
[43] DOI: 10.1016/S0370-2693(98)00293-7 · Zbl 1049.83521 · doi:10.1016/S0370-2693(98)00293-7
[44] DOI: 10.1016/S0370-2693(98)00294-9 · Zbl 1049.83518 · doi:10.1016/S0370-2693(98)00294-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.