×

On residual empirical processes of stochastic regression models with applications to time series. (English) Zbl 0943.62092

A regression model \[ y_{nt}= \beta_n' x_{nt}+ r_{nt}+ \varepsilon_{nt}, \quad t=1,2,\dots, n, \] is considered, where \(\beta_n\) are \(q_n\times 1\) unknown parameters, \(x_{nt}\) are observable \(q_n\times 1\) random vectors, and \(r_{nt}\) are random variables not necessarily observable, which may be viewed as “model bias”. The errors \(\{\varepsilon_{nt}\), \(t=1,\dots, t\}\) are i.i.d. random variables with common distribution \(H_n\). Given the observations \((x_{n1} y_{n1}),\dots, (x_{nn}, y_{nn})\), the residual epirical process is defined by \[ \widetilde{Y}_n(u)= n^{-1/2} \sum_{t=1}^n [I(H_n (\widetilde {\varepsilon}_{nt})\leq u)- u], \quad 0\leq u\leq 1, \] where \(\widetilde {\varepsilon}_{nt}= y_{nt}- \widetilde{\beta}_n' x_{nt}\) and \(\widetilde{\beta}_n\) is the least squares estimate of \(\beta_n\). The process can be imployed to form a Gaussian test statistic. M.V. Boldin [Theory Probab. Appl. 27, 866-871 (1982); translation from Teor. Veroyatn. Primen. 27, No. 4, 805-810 (1982; Zbl 0499.62083)] and D.A. Pierce [Biometrika 72, 293-297 (1985; Zbl 0571.62014)] applied it to stationary \(\text{AR}(q)\) models.
In the present paper an oscillation-like result is derived for the process \(\widetilde{Y}_n (u)\). The result is applied to autoregressive time series. For a stationary \(\text{AR}(\infty)\) process, the order of the fitted \(\text{AR} (q_n)\) process is determined and the limiting Gaussian process for \(\widetilde Y_n(u)\) is obtained. For an unstable \(A(q)\) process, the limiting process is no longer Gaussian if the characteristic polynomial has a root 1. For the explosive case, the Brownian bridge result given by H.L. Koul and Sh. Levental [Ann. Stat. 17, No. 4, 1784-1794 (1989; Zbl 0695.60042)] is reestablished by a short proof.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60F17 Functional limit theorems; invariance principles
Full Text: DOI

References:

[1] Berk, K. N. (1974). Consistent autoregressive spectral estimates. Ann. Statist. 2 489-502. · Zbl 0317.62064 · doi:10.1214/aos/1176342709
[2] Boldin, M. V. (1982). Estimation of the distribution of noise in an autoregressive scheme. Theory Probab. Appl. 27 886-871. · Zbl 0526.62085 · doi:10.1137/1127098
[3] Brockwell P. J. and Davis, R. A. (1990). Time Series: Theory and Methods, 2nd ed. Springer, New York. · Zbl 0604.62083
[4] Chan, N. H. and Wei, C. Z. (1988). Limiting distribution of least squares estimates of unstable autoregressive processes. Ann. Statist. 16 367-401. · Zbl 0666.62019 · doi:10.1214/aos/1176350711
[5] Cramér, H. (1974). Mathematical Methods of Statistics. Princeton Univ. Press. · Zbl 0985.62001
[6] Durbin, J. (1973). Weak convergence of the sample distribution function when parameters are estimated. Ann. Statist. 1 279-290. · Zbl 0256.62021 · doi:10.1214/aos/1176342365
[7] Epps, T. W. (1987). Testing that a stationary time series is Gaussian. Ann. Statist. 15 1683-1698. · Zbl 0644.62093 · doi:10.1214/aos/1176350618
[8] Grenander, U. and Szeg ö, G. (1958). Toplitz Forms and Their Applications. Univ. California Press, Berkeley. · Zbl 0080.09501
[9] Hinich, M. J. (1982). Testing for Gaussianality and linearity of a stationary time series. J. Time Series Anal. 3 169-176. · Zbl 0502.62079 · doi:10.1111/j.1467-9892.1982.tb00339.x
[10] Koul, H. L. (1992). Weighted Empiricals and Linear Models. IMS, Hayward, CA. · Zbl 0998.62501
[11] Koul, H. L. and Levental, S. (1989). Weak convergence of residual empirical process in explosive autoregression. Ann. Statist. 17 1784-1794. · Zbl 0695.60042 · doi:10.1214/aos/1176347395
[12] Kreiss, J. P. (1988). Asymptotic for the empirical distribution of residuals in autoregression with infinite order. Unpublished manuscript.
[13] Lee, S. (1991). Testing whether a time series is Gaussian. Ph.D. dissertation, Dept. Mathematics, Univ. Maryland.
[14] Lii, K. S. and Rosenblatt, M. (1982). Deconvolution and estimation of transfer function phase and coefficients for nongaussian linear processes. Ann. Statist. 10 1195-1208. · Zbl 0512.62090 · doi:10.1214/aos/1176345984
[15] Pierce, D. A. (1985). Testing normality in autoregressive models. Biometrika 72 293-297. · Zbl 0571.62014 · doi:10.1093/biomet/72.2.293
[16] Rosenblatt, M. (1985). Stationary Sequences and Random Fields. Birkhäuser. Boston. · Zbl 0597.62095
[17] Roussas, G. (1972). Contiguity of Probability Measures: Some Applications in Statistics. Cambridge Univ. Press. · Zbl 0265.60003
[18] Shibata, R. (1980). Asymptotically efficient selection of the model for estimating parameters of a linear process. Ann. Statist. 8 147-164. · Zbl 0425.62069 · doi:10.1214/aos/1176344897
[19] Shorack, G. and Wellner, J. (1986). Empirical Processes with Applications to Statistics. Wiley, New York. · Zbl 1170.62365
[20] Stute, W. (1982). The oscillation behavior of empirical processes. Ann. Probab. 10 86-107. · Zbl 0489.60038 · doi:10.1214/aop/1176993915
[21] Subba Rao, T. and Gabr, M. M. (1980). A test for linearity of stationay time series. J. Time Series Anal. 1 145-158. · Zbl 0499.62078 · doi:10.1111/j.1467-9892.1980.tb00308.x
[22] Wei, C. Z. (1992). On predictive least squares principles. Ann. Statist. 20 1-42. · Zbl 0801.62083 · doi:10.1214/aos/1176348511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.