×

Large deviation theorems for extended random variables and some applications. (English) Zbl 0943.60014

The author studies the family \(Y_t\), \(t>0\), of extended real random variables which may also attain one of the values \(+\infty\) or \(-\infty\). Assuming a key condition on their corresponding (extended) moment generating functions \(m_t(\varepsilon)= E\exp (\varepsilon Y_t)\), \(\varepsilon\in (-\infty, \infty)\), the Chernoff type large deviation asymptotics of \(P(Y_t> \varphi_t x)\) and \(P(Y_t< \varphi_t x)\) are derived, where \(\varphi_t\to \infty\) as \(t\to\infty\). A related large deviation principle is also proved. With these tools in hand, the asymptotics of the error probabilities are studied e.g. for Neyman-Pearson tests, Bayes tests and minimax tests. The above results are complementary to earlier work of Sievers, Plachky, Steinebach, Gärtner, Ellis and other authors.

MSC:

60F05 Central limit and other weak theorems
62F05 Asymptotic properties of parametric tests
62F15 Bayesian inference
Full Text: DOI

References:

[1] R. R. Bahadur,Some Limit Theorems in Statistics, SIAM, Philadelphia (1971). · Zbl 0257.62015
[2] L. Birgé, ”Vitesses maximales de décrvissance des erreurs et tests optimaux associés,”Z. Wahrscheinlichkeitstheorie und verw. Geb.,55, 261–273 (1981). · Zbl 0486.62029 · doi:10.1007/BF00532119
[3] S. A. Book, ”Convergence rates for a class of large deviation probabilities,”Ann. Probab.,3, 516–525 (1975). · Zbl 0312.60015 · doi:10.1214/aop/1176996357
[4] A. A. Borovkov,Mathematical statistics [in Russian], Nauka, Moscow (1984). · Zbl 0575.62002
[5] A. A. Borovkov and A. A. Mogul’skii,Large Deviations and Statistical Hypothesis Testing [in Russian], Nauka, Novosibirsk (1992).
[6] H. Chernoff, ”A measure of asymptotic efficiency for tests of hypotheses based on the sum of observations,”Ann. Math. Statist.,23, 493–507 (1952). · Zbl 0048.11804 · doi:10.1214/aoms/1177729330
[7] H. Cramèr, ”Sur un nouveau théorème-limite de la théorie des probabilités,”Actualités Scientifiques Industrielles,736, 5–23 (1938).
[8] J. D. Deuschel and D. W. Stroock,Large Deviations, Academic Press, Boston (1989).
[9] R. S. Ellis, ”Large deviations for a general class of random vectors,”Ann. Probab.,12, 1–12 (1984). · Zbl 0534.60026 · doi:10.1214/aop/1176993370
[10] R. S. Ellis,Entropy, Large Deviations, and Statistical Mechanics, Springer, Berlin (1985). · Zbl 0566.60097
[11] P. Groeneboom, J. Oosterhoff, and F. H. Ruymgaart, ”Large deviation theorems for empirical probability measures,”Ann. Probab.,7, 553–586 (1979). · Zbl 0425.60021 · doi:10.1214/aop/1176994984
[12] Yu. N. Lin’kov,Asymptotical Methods of Statistics for Stochastic Processes [in Russian], Naukova Dumka, Kiev (1993).
[13] Yu. N. Lin’kov, ”Large deviations in testing problems of counting processes,”Ukr. Mat. Z.,45, 1703–1712 (1993). · Zbl 0856.60035 · doi:10.1007/BF01060860
[14] Yu. N. Lin’kov, ”Limit theorems for the local density of measures in the hypotheses testing problems of counting processes,” in:Probability Theory and Mathematical Statistics, VSP, Utrecht (1994), pp. 497–515. · Zbl 0841.62075
[15] Yu. N. Lin’kov, ”Limit theorems for the likelihood ratio in the hypotheses testing problems,”Random Oper. Stoch. Equations,3, 23–40 (1995). · Zbl 0822.60026 · doi:10.1515/rose.1995.3.1.23
[16] Yu. N. Lin’kov, ”Large deviations theorems in the hypotheses testing problems,” in:Exploring Stochastic Laws: Festschrift in Honour of the 70th Birthday of Academician V. S. Korolyuk, VSP, Utrecht (1995), pp. 263–273. · Zbl 1175.62017
[17] Yu. N. Lin’kov and L. A. Lunyova, ”Large deviation theorems in the testing problems for Bernoulli sequences,”Random Oper. Stoch. Equations,3, 231–243 (1995).
[18] Yu. N. Lin’kov and M. I. Medvedeva, ”Large deviation theorems in testing problems for two simple hypotheses,”Ukr. Mat. Zh.,47, 227–235 (1995). · doi:10.1007/BF01056717
[19] Yu. N. Lin’kov and M. I. Medvedeva, ”Large deviation theorems for the logarithm of the likelihood ratio,”Teor. Veroyatn. Mat. Statist.,53, 87–96 (1995). · Zbl 0941.60053
[20] Yu. N. Lin’kov and M. I. Medvedeva, ”Large deviation theorems in the testing problems for the normal autoregressive processes,”Teor. Sluch. Prots.,1(17), 71–81 (1995).
[21] A. A. Mogul’skii, ”A probabilistic inequality for obtaining lower bounds in the large deviation principle,”Sib. Mat. Zh.,37, 889–904 (1996).
[22] D. Plachky, ”On a theorem of G. L. Sievers,”Ann. Math. Statist.,42, 1442–1443 (1971). · Zbl 0222.60016 · doi:10.1214/aoms/1177693257
[23] D. Plachky and J. Steinebach, ”A theorem about probabilities of large deviations with an application to queueing theory,”Period. Math. Hungar.,6, 343–345 (1975). · doi:10.1007/BF02017929
[24] R. T. Rockafellar,Convex Analysis, Princeton Univ. Press, Princeton (1970). · Zbl 0193.18401
[25] G. L. Sievers, ”On the probability of large deviations and exact slopes,”Ann. Math. Statist.,40, 1908–1921 (1969). · Zbl 0193.46701 · doi:10.1214/aoms/1177697275
[26] G. L. Sievers, ”Multivariate probabilities of large deviations,”Ann. Statist.,3, 897–905 (1975). · Zbl 0313.60023 · doi:10.1214/aos/1176343190
[27] J. Steinebach, ”Convergence rate of large deviation probabilities in the multidimensional case,”Ann. Probab.,6, 751–759 (1978). · Zbl 0396.60032 · doi:10.1214/aop/1176995426
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.