×

Hankel operators on bounded analytic functions. (English) Zbl 0942.47019

\(H^\infty(U)\) denotes the algebra of bounded analytic functions on a bounded open subset \(U\) of the complex plane. \(H^\infty(U)\) is regarded as a subalgebra of \(L^\infty(\sigma)\) where \(\sigma\) denotes area measure on \(U\). For fixed \(g\in L^\infty(\sigma)\), \(S_g(f)= gf+ H^\infty(U)\) and \(S_g\) is called Hankel-type operator from \(H^\infty(U)\) to \(L^\infty(\sigma)/H^\infty(U)\). Put \(B^\infty(U)= \{g\in L^\infty(\sigma): S_g\) is compact}. In general, \(B^\infty(U)\supseteq [H^\infty(U)+ C(\overline U)+ L^\infty_0(\sigma)]\) where \([X]\) denotes the closed linear span in \(L^\infty(\sigma)\), \(C(\overline U)\) is the set of all continuous functions on \(\overline U\) and \(L^\infty_0(\sigma)\) is the set of those functions from \(L^\infty(\sigma)\) that tend to \(0\) at \(\partial U\).
The authors show that if every point of \(\partial U\) is a peak point for \(H^\infty(U)\), then \(B^\infty(U)= [H^\infty(U)+ C(\overline U)+ L^\infty_0(\sigma)]\). Moreover, they show that \(B^\infty(U)\neq [H^\infty(U)+ C(\overline U)+ L^\infty_0(\sigma)]\) for the class of infinitely connected domains introduced by M. Behrens.
Reviewer: T.Nakazi (Sapporo)

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
46J15 Banach algebras of differentiable or analytic functions, \(H^p\)-spaces
47B38 Linear operators on function spaces (general)
46E10 Topological linear spaces of continuous, differentiable or analytic functions
30D55 \(H^p\)-classes (MSC2000)
Full Text: DOI

References:

[1] M. Behrens, The corona conjecture for a class of infinitely connected domains, Bull. Amer. Math. Soc. 76 (1970), 387 – 391. · Zbl 0197.11502
[2] Michael Frederick Behrens, The maximal ideal space of algebras of bounded analytic functions on infinitely connected domains, Trans. Amer. Math. Soc. 161 (1971), 359 – 379. · Zbl 0234.46057
[3] J. Bourgain, The Dunford-Pettis property for the ball-algebras, the polydisc-algebras and the Sobolev spaces, Studia Math. 77 (1984), no. 3, 245 – 253. · Zbl 0576.46040
[4] J. Bourgain, New Banach space properties of the disc algebra and \?^{\infty }, Acta Math. 152 (1984), no. 1-2, 1 – 48. · Zbl 0574.46039 · doi:10.1007/BF02392189
[5] Joseph A. Cima, Svante Janson, and Keith Yale, Completely continuous Hankel operators on \?^{\infty } and Bourgain algebras, Proc. Amer. Math. Soc. 105 (1989), no. 1, 121 – 125. · Zbl 0709.30032
[6] Joseph A. Cima, Karel Stroethoff, and Keith Yale, Bourgain algebras on the unit disk, Pacific J. Math. 160 (1993), no. 1, 27 – 41. · Zbl 0816.46046
[7] Joseph A. Cima and Richard M. Timoney, The Dunford-Pettis property for certain planar uniform algebras, Michigan Math. J. 34 (1987), no. 1, 99 – 104. · Zbl 0617.46058 · doi:10.1307/mmj/1029003487
[8] Brian J. Cole and T. W. Gamelin, Tight uniform algebras and algebras of analytic functions, J. Funct. Anal. 46 (1982), no. 2, 158 – 220. · Zbl 0569.46034 · doi:10.1016/0022-1236(82)90034-9
[9] B. J. Cole and T. W. Gamelin, Weak-star continuous homomorphisms and a decomposition of orthogonal measures, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 1, 149 – 189. · Zbl 0546.46042
[10] A. M. Davie, T. W. Gamelin, and J. Garnett, Distance estimates and pointwise bounded density, Trans. Amer. Math. Soc. 175 (1973), 37 – 68. · Zbl 0263.30033
[11] T. W. Gamelin, Lectures on \(H^\infty(D)\), Notas de Matemática, No.21, Universidad Nacional de La Plata, Argentina, 1972.
[12] T. W. Gamelin, Uniform Algebras, 2nd edition, Chelsea Press, 1984. · Zbl 0213.40401
[13] T. W. Gamelin, Localization of the corona problem, Pacific J. Math. 34 (1970), 73 – 81. · Zbl 0199.18801
[14] T. W. Gamelin, Uniform algebras on plane sets, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 101 – 149. · Zbl 0325.30035
[15] T. W. Gamelin and John Garnett, Distinguished homomorphisms and fiber algebras, Amer. J. Math. 92 (1970), 455 – 474. · Zbl 0212.15302 · doi:10.2307/2373334
[16] John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. · Zbl 0469.30024
[17] Pamela Gorkin, Keiji Izuchi, and Raymond Mortini, Bourgain algebras of Douglas algebras, Canad. J. Math. 44 (1992), no. 4, 797 – 804. · Zbl 0763.46046 · doi:10.4153/CJM-1992-047-6
[18] P. Gorkin and Z. Zheng, in preparation.
[19] Keiji Izuchi, Bourgain algebras of the disk, polydisk, and ball algebras, Duke Math. J. 66 (1992), no. 3, 503 – 519. · Zbl 0806.46061 · doi:10.1215/S0012-7094-92-06616-6
[20] Scott F. Saccone, Banach space properties of strongly tight uniform algebras, Studia Math. 114 (1995), no. 2, 159 – 180. · Zbl 0826.46019
[21] Lawrence Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc. 144 (1969), 241 – 269. · Zbl 0188.45002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.