×

Runge-Walsh-wavelet approximation for the Helmholtz equation. (English) Zbl 0940.35062

Summary: Metaharmonic wavelets are introduced for constructing the solution of the Helmholtz equation (reduced wave equation) corresponding to Dirichlet’s or Neumann’s boundary values on a closed surface \(\Sigma\) in three-dimensional Euclidean space \(\mathbb{R}^3\). A consistent scale continuous and scale discrete wavelet approach leading to exact reconstruction formulas is considered in more detail. A scale discrete version of multiresolution is described for potential functions metaharmonic outside the closed surface and satisfying the radiation condition at infinity. Moreover, we discuss fully discrete wavelet representations of band-limited metaharmonic potentials. Finally, a decomposition and reconstruction (pyramid) scheme for economical numerical implementation is presented for Runge-wavelet approximation.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65T60 Numerical methods for wavelets
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
35C10 Series solutions to PDEs
Full Text: DOI

References:

[1] Driscoll, J. R.; Healy, D. M., Computing Fourier transforms and convolutions on the 2-Sphere, Adv. in Appl. Math., 15, 202-250 (1996) · Zbl 0801.65141
[2] Freeden, W., Metaharmonic splines for solving the exterior Dirichlet problem for the Helmholtz equation, (Chui, C. K., Topics in Multivariate Approximation (1987)), 99-110 · Zbl 0628.41007
[3] Freeden, W., A spline interpolation method for solving boundary-value problems of potential theory from discretely given data, Numer. Methods Partial Differential Equations, 3, 375-398 (1987) · Zbl 0659.65111
[4] Freeden, W.; Schneider, F., An integrated wavelet concept of physical geodesy, Journal of Geodesy, 72, 259-281 (1998) · Zbl 0999.86007
[5] Freeden, W.; Schreiner, M., Orthogonal and non-orthogonal multiresolution analysis: scale discrete and exact fully discrete wavelet transform on the sphere, Constr. Approx., 14, 493-515 (1998) · Zbl 0944.42030
[6] Freeden, W.; Windheuser, U., Spherical wavelet transform and its discretization, Adv. Comput. Math., 5, 51-94 (1996) · Zbl 0858.44005
[7] Freeden, W.; Windheuser, U., Combined spherical harmonic and wavelet expansion—a future concept in earth’s gravitational potential determination, Appl. Comput. Harmon. Anal., 4, 1-37 (1997) · Zbl 0865.42029
[8] Kersten, H., Die C-Vollständigkeit partikulärer Lösungssysteme der Schwingungsgleichung Δ \(U+k^2U=0\), Res. Math., 4, 155-170 (1981) · Zbl 0474.35038
[9] Müller, C., Spherical Harmonics. Spherical Harmonics, Lecture Notes in Mathematics, 17 (1966), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0138.05101
[10] Müller, C., Foundations of the Mathematical Theory of Electromagnetic Waves (1969), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0181.57203
[11] Müller, C.; Kersten, H., Zwei Klassen vollständiger Funktionensysteme zur Behandlung der Schwingungsgleichung Δ \(U+k^2U=0\), Math. Methods Appl. Sci., 2, 48-67 (1980) · Zbl 0434.35028
[12] Runge, C., Zur Theorie der eindeutigen analytischen Funktionen, Acta Math., 6, 229-244 (1885) · JFM 17.0379.01
[13] Vekua, I. N., Über die Vollständigkeit des Systems metaharmonischer Funktionen (Russian), Dokl. Acad. Nauk SSSR, 90, 715-718 (1953) · Zbl 0051.04902
[14] Walsh, J. L., The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions, Amer. Math. Soc., 35, 499-544 (1929) · JFM 55.0889.05
[15] Yamabe, H., On an extension of Helly’s theorem, Osaka J. Math., 2, 15-22 (1959) · Zbl 0036.36202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.