×

Sentences over integral domains and their computational complexities. (English) Zbl 0940.03015

Summary: Let \(R\) be a Hilbertian domain and let \(K\) be its fraction field. Let \(\psi(x_1, \dots, x_n,y)\) be a quantifier-free arithmetical formula over \(R\). One may also take \(\psi(x_1, \dots, x_n,y)\) to be an arithmetical formula over \(K[x_1, \dots, x_n]\) and write it as \(\overline\psi (y)\). The authors show that if \(R\) has enough non-units and \(\forall x_1 \dots \forall x_n \exists y \psi(x_1, \dots, x_n,y)\), called an \(\forall^n \exists\) sentence, is true in \(R\), then \(\exists y \overline \psi(y)\) is true in \(K[x_1, \dots, x_n]\). Also, if \(R=K[T]\), where \(K\) is an infinite integral domain and \[ \forall x_1\dots \forall x_n \exists y \psi(x_1, \dots, x_n,y) \] is true in \(R\), then \(\exists y \overline \psi(y)\) is true in \(R[x_1, \dots, x_n]\). These results are applied to find the upper and lower bounds of the time complexities of various decision problems on diophantine equations with parameters and arithmetical sentences.
Some of the results are: 1. The decision problem of \(\forall\exists\) sentences and diophantine equations with parameters over the ring of integers of a global field are co-NP-complete. 2. The decision problem of \(\exists\forall\) sentences over the ring of integers of a global field is NP-complete. 3. Let \(K\) be an infinite domain, the time complexities of the decision problems of equations with parameters and \(\forall \exists\) sentences over the polynomial ring \(K[t]\) are polynomial time reducible to factoring polynomials over \(K\). 4. The decision problem of \(\forall\exists\) sentences over all algebraic integer rings is in P. 5. The decision problem of \(\forall\exists\) sentences over all integral domains with characteristic 0 is in P. 6. The time complexity of the decision problem of \(\forall\exists\) sentences over all integral domains is polynomial time reducible to factoring integers over \(Z\) and factoring polynomials over finite fields.

MSC:

03B25 Decidability of theories and sets of sentences
12L05 Decidability and field theory
12L12 Model theory of fields
03D15 Complexity of computation (including implicit computational complexity)
68Q25 Analysis of algorithms and problem complexity
12E25 Hilbertian fields; Hilbert’s irreducibility theorem
03C60 Model-theoretic algebra
Full Text: DOI

References:

[1] Aho, A. V.; Hopcroft, J. E.; Ullman, J. D., The Design and Analysis of Computer Algorithms (1974), Addison-Wesley: Addison-Wesley Reading · Zbl 0286.68029
[2] Artin, E.; Whaples, G., Axiomatic characteristic of fields by the product formulas, Bull. Amer. Math. Soc., 51, 469-492 (1945) · Zbl 0060.08302
[3] Berlekamp, R. E., Factoring polynomials over large finite fields, Math. Comp., 24, 713-735 (1970) · Zbl 0247.12014
[4] Chang, C. C.; Keisler, H. J., Model Theory (1977), North-Holland: North-Holland Amsterdam · Zbl 0697.03022
[5] Chistov, A. L., Polynomial complexity algorithm for factoring polynomials and constructing components of a variety in subexponential time, J. Sov. Math., 34, 1838-1882 (1986) · Zbl 0596.12022
[6] Chistov, A. L., Efficient factoring polynomials over local fields and its applications, Proceedings, International Congress of Mathematicians, Kyoto (1990), Springer-Verlag: Springer-Verlag Tokyo, p. 1509-1519 · Zbl 0761.11045
[7] Cohen, S. D., The distribution of Galois groups and Hilbert’s irreducibility theorem, Proc. London Math. Soc., 43, 227-250 (1981) · Zbl 0484.12002
[8] Cook, S. A., The complexity of theorem-proving procedures, Proceedings, 3rd ACM Symp. Theory of Computing 1971 (1971), p. 151-158 · Zbl 0253.68020
[9] Enderton, H. B., A Mathematical Introduction to Logic (1972), Academic Press: Academic Press New York · Zbl 0298.02002
[10] Fried, M.; Jarden, M., Field Arithmetic (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0625.12001
[11] Fried, M.; Sacerdote, G., Solving diophantine problems over all residue class fields of a number field and all finite fields, Ann. Math., 104, 203-233 (1976) · Zbl 0376.02042
[12] Fürer, M., The complexity of Presburger arithmetic with bounded quantifier alternation depth, Theoret. Comput. Sci., 18, 105-111 (1982) · Zbl 0484.03003
[13] Garey, M. R.; Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness (1979), Freeman: Freeman San Francisco · Zbl 0411.68039
[14] von zur Gathen, J., Irreducibility of multivariate polynomials, J. Comput. System Sci., 31, 225-264 (1985) · Zbl 0604.68043
[15] von zur Gathen, J.; Kaltofen, E., Factoring sparse multivariate polynomials, J. Comput. System Sci., 31, 265-287 (1985) · Zbl 0599.68037
[16] Gilbert, R., Prüfer domains and rings of integer-valued polynomials, J. Algebra, 129, 502-517 (1990) · Zbl 0689.13009
[17] Grädel, E., Dominoes and the complexity of subclasses of logical theories, Ann. Pure Appl. Logic, 43, 1-30 (1989) · Zbl 0665.03027
[18] Grigoriev, D. Y., Factorization of polynomials over a finite field and solution of systems of algebraic equations, J. Sov. Math., 34, 1762-1803 (1986) · Zbl 0596.12023
[19] Grosch, W., Lösung zu Aufgabe 402, Arch. Math. Phys., 21, 368-369 (1913) · JFM 44.0116.01
[20] Heintz, J.; Sieveking, M., Absolute primality of polynomials is decidable in random polynomial time in the number of variables, Lecture Notes in Comput. Sci. (1981), Springer-Verlag: Springer-Verlag Berlin, p. 16-28 · Zbl 0462.68025
[21] Hilbert, D., Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten, J. Reine Angew. Math., 110, 104-129 (1892) · JFM 24.0087.03
[22] Huang, M. D., Factorization of polynomials over finite fields and factorization of primes in algebraic number fields, Proceedings, 16th ACM Symp. Theory of Computing (1984), p. 175-182
[23] Jentzsch, R., Arch. Math. Phys., 19, 361 (1912) · JFM 43.0673.03
[24] Jones, J. P., Classification of quantifier prefixes over diophantine equations, Z. Math. Logik Grundlag. Math., 27, 403-410 (1981) · Zbl 0472.03034
[25] Kaltofen, E., Effective Hilbert irreducibility, Inform. and Control, 66, 123-137 (1985) · Zbl 0584.12019
[26] Kaltofen, E., Fast parallel absolute irreducibility testing, J. Symbolic Comput., 14, 184-195 (1985) · Zbl 0599.68038
[27] Kaltofen, E., Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factorization, SIAM J. Comp., 14, 469-489 (1985) · Zbl 0605.12001
[28] Kojima, T., Note on number-theoretical properties of algebraic functions, Tohoku Math. J., 8, 24-37 (1915) · JFM 45.1256.02
[29] Landau, S., Factoring polynomials over algebraic number fields, SIAM J. Comput., 14, 184-195 (1985) · Zbl 0565.12002
[30] Landau, S.; Miller, G. L., Solvability by radicals is in polynomial time, J. Comput. System. Sci., 30, 179-208 (1985) · Zbl 0586.12002
[31] Lang, S., Algebra (1971), Addision-Wesley: Addision-Wesley Reading
[32] Lang, S., Fundamentals of Diophantine Geometry (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0528.14013
[33] Lenstra, A. K. 1984, Factoring multivariate integral polynomials, Theoret. Comput. Sci. 34, 207, 213; Lenstra, A. K. 1984, Factoring multivariate integral polynomials, Theoret. Comput. Sci. 34, 207, 213 · Zbl 0985.12500
[34] Lenstra, A. K., Factoring multivariate polynomials over finite fields, J. Comput. System Sci., 30, 235-248 (1985) · Zbl 0577.12013
[35] Lenstra, A. K., Factoring multivariate polynomial over algebraic number fields, SIAM J. Comput., 16, 591-598 (1987) · Zbl 0636.12005
[36] Lenstra, A. K.; Lenstra, H. W.; Lovász, L., Factoring polynomials with rational coefficients, Math. Ann., 261, 515-534 (1982) · Zbl 0488.12001
[37] Lewis, H. R.; Papadimitriou, C. H., Elements of the Theory of Computation (1981), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0464.68001
[38] Lovász, L., Connections between number theoretic properties of polynomials and their substitutional values (Hungarian), Math. Lopok, 20, 129-132 (1969) · Zbl 0191.32502
[39] Manders, M.; Adleman, J., NP-complete decision problems for binary quadratics, J. Comput. System Sci., 16, 168-184 (1978) · Zbl 0369.68030
[40] Mann, H., Introduction to Algebraic Number Theory (1955), Ohio State Univ. Press: Ohio State Univ. Press Columbus · Zbl 0068.03103
[41] McCarthy, P. J., Algebraic Extensions of Fields (1966), Blaisdell: Blaisdell MA · Zbl 0143.05802
[42] McKenna, K.; v. d. Dries, L., Surjective polynomial maps, and a remark on the Jacobin problem, Manuscripta Math., 67, 1-15 (1990) · Zbl 0714.14013
[43] Reddy, C. R.; Loveland, D. W., Presburger arithmetic with bounded quantifier alternation, Proceedings, 10th ACM Symp. Theory of Computing (1978), p. 320-325 · Zbl 1282.68142
[44] Scarpellini, B., Complexity of subcases of Presburger arithmetic, Trans. Amer. Math. Soc., 284, 203-218 (1984) · Zbl 0548.03018
[45] Schinzel, A., Diophantine equations with parameters, Journées Arithmetiques 1980. Journées Arithmetiques 1980, London Math. Soc. Lecture Note Series, 56 (1982), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, p. 211-217 · Zbl 0539.10017
[46] Schinzel, A., Selected Topics on Polynomials (1982), Univ. of Michigan Press: Univ. of Michigan Press Ann Arbor · Zbl 0487.12002
[47] Skolem, T., Logico-combinatorial investigations in the satisfiability or provability of mathematical propositions: A simplified proof of a theorem by L. Löwenheim and generalizations of the theorem, (van Heijenport, J., From Frege to Gödel. A Source Book in Mathematical Logic, 1879-1931 (1920), Harvard Univ. Press: Harvard Univ. Press Cambridge), 252-264
[48] Skolem, T., Untersuchungen über die möglichen Verteilungen ganzzahliger Lösungen gewisser Gleichungen, Kristiania Vid. Selskab. Skrifter I (1912) · JFM 48.0139.02
[49] Sprindzhuk, V. G., Achievements and problems in diophantine approximation theory, Russian Math. Survey, 35, 1-80 (1980) · Zbl 0463.10020
[50] Stockmeyer, L. J., The polynomial-time hierarchy, Theoret. Comput. Sci., 3, 1-22 (1977) · Zbl 0353.02024
[51] Stockmeyer, L. J.; Meyer, A. R., Word problems requiring exponential time, Proceedings, 5th ACM Symp. Theory of Computing (1973), p. 1-9 · Zbl 0359.68050
[52] Tung, S. P., On weak number theories, Japan. J. Math., 11, 203-232 (1985) · Zbl 0611.03027
[53] Tung, S. P., Definability in number fields, J. Symbolic Logic, 52, 152-155 (1987) · Zbl 0629.03009
[54] Tung, S. P., Computational complexities of diophantine equations with parameters, J. Algorithms, 8, 324-336 (1987) · Zbl 0641.03009
[55] Tung, S. P., Algorithms for sentences over integral domains, Ann. Pure Appl. Logic, 47, 189-197 (1990) · Zbl 0709.03003
[56] Tung, S. P., Complexity of sentences over number rings, SIAM J. Comput., 20, 126-143 (1991) · Zbl 0717.03002
[57] Tung, S. P., Polynomial time algorithms for sentences over number fields, Inform. Comput., 97, 262-276 (1991) · Zbl 0761.03006
[58] Tung, S. P., Computational complexity of arithmetical sentences, Inform. Comput., 120, 315-325 (1995) · Zbl 0833.03002
[59] Tung, S. P., The bounds of Skolem functions and their applications, Inform. Comput., 120, 149-154 (1995) · Zbl 0846.11065
[60] Tung, S. P. 1998, Computational complexity of sentences over fields; Tung, S. P. 1998, Computational complexity of sentences over fields
[61] Weinberger, P.; Rothschild, L., Factoring polynomials over algebraic number fields, ACM Trans. Math. Software, 2, 335-350 (1976) · Zbl 0352.12003
[62] Weissauer, R., Der Hilbertsche Irreduzibilitätssatz, J. Reine Angew. Math., 334, 203-220 (1982) · Zbl 0477.12029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.