×

Preconditioning methods for very ill-conditioned three-dimensional linear elasticity problems. (English) Zbl 0939.74065

Summary: Finite element models of linear elasticity arise in many application areas of structural analysis. Solving the resulting system of equations accounts for a large portion of the total cost for large, three-dimensional models, for which direct methods can be prohibitively expensive. Preconditioned conjugate gradient (PCG) methods are used to solve difficult problems with small \((\ll 1)\) average element aspect ratios. Incomplete Cholesky \((\text{ILL}^T)\) factorizations based on a drop tolerance parameter are used to form the preconditioning matrices. Various new techniques known as reduction techniques are examined. Combinations of these reduction techniques result in highly effective preconditioners for problems with very poor aspect ratios. Standard and hierarchical triquadratic basis functions are used on hexahedral elements, and test problems comprising a variety of geometries with up to 5 0000 degrees of freedom are considered. Manteuffel’s method of perturbing the stiffness matrix to ensure positive pivots occur during factorization is used, and its effects on the convergence of the preconditioned system are discussed.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
65F10 Iterative numerical methods for linear systems
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Fish, Int. J. Numer. Meth. Engng. 40 pp 1767– (1997) · doi:10.1002/(SICI)1097-0207(19970530)40:10<1767::AID-NME136>3.0.CO;2-G
[2] Hladík, Int. J. Numer. Meth. Engng. 40 pp 2109– (1997) · Zbl 0896.73059 · doi:10.1002/(SICI)1097-0207(19970615)40:11<2109::AID-NME163>3.0.CO;2-1
[3] Saint-Georges, Int. J. Numer. Meth. Engng. 39 pp 1313– (1996) · Zbl 0886.73071 · doi:10.1002/(SICI)1097-0207(19960430)39:8<1313::AID-NME906>3.0.CO;2-J
[4] Dracopoulos, Int. J. Numer. Meth. Engng. 38 pp 3297– (1995) · Zbl 0835.73073 · doi:10.1002/nme.1620381908
[5] Bulgakov, Int. J. Numer. Meth. Engng. 38 pp 3529– (1995) · Zbl 0835.73070 · doi:10.1002/nme.1620382010
[6] Suarjana, Int. J. Numer. Meth. Engng. 38 pp 1703– (1995) · Zbl 0822.73073 · doi:10.1002/nme.1620381007
[7] Dickinson, Int. J. Numer. Meth. Engng. 37 pp 2211– (1994) · Zbl 0806.73066 · doi:10.1002/nme.1620371305
[8] D’Azevedo, BIT 32 pp 442– (1992) · Zbl 0761.65017 · doi:10.1007/BF02074880
[9] Jennings, J. Inst. Maths. Appl. 20 pp 307– (1977) · Zbl 0367.65019 · doi:10.1093/imamat/20.3.307
[10] and The Finite Element Method, 4th edn. McGraw-Hill, London, 1989.
[11] D’Azevedo, SIAM. J. Matrix Anal. Appl. 13 pp 944– (1992) · Zbl 0760.65028 · doi:10.1137/0613057
[12] Ajiz, Int. J. Numer. Meth. Engng. 20 pp 949– (1984) · Zbl 0541.65019 · doi:10.1002/nme.1620200511
[13] Iterative Solution Methods, Cambridge University Press, New York, 1994. · doi:10.1017/CBO9780511624100
[14] and Finite Element Solution of Boundary Value Problems: Theory and Computation, Academic Press, Orlando, 1984.
[15] Beauwens, J. Comput. Appl. Math. 26 pp 257– (1989) · Zbl 0678.65029 · doi:10.1016/0377-0427(89)90298-7
[16] ?Modified incomplete factorization strategies?, in and (eds.), Preconditioned Conjugate Gradient Methods, Lecture Notes in Mathematics, vol. 1457, Springer, Berlin, 1990, pp. 1?16. · doi:10.1007/BFb0090898
[17] ?A class of preconditioned conjugate gradient methods applied to the finite element equations?, in and (eds.), Preconditioned Conjugate Gradient Methods, Lecture Notes in Mathematics, vol. 1457, Springer, Berlin, 1990, pp. 44?57. · doi:10.1007/BFb0090901
[18] Manteuffel, Math. Comp. 34 pp 473– (1980) · doi:10.1090/S0025-5718-1980-0559197-0
[19] Zienkiewicz, Comput. Struct. 16 pp 53– (1983) · Zbl 0498.73072 · doi:10.1016/0045-7949(83)90147-5
[20] Axelsson, Math. Comp. 40 pp 219– (1983) · doi:10.1090/S0025-5718-1983-0679442-3
[21] Jung, BIT 29 pp 748– (1989) · Zbl 0701.65024 · doi:10.1007/BF01932744
[22] and ?Using Korn’s inequality for an efficent iterative solution of strucural analysis problems?, in (eds.), Iterative Methods in Linear Algebra, North-Holland, Elsevier Science, Amsterdam, 1992, pp. 575?581.
[23] Farhat, Int. J. Numer. Meth. Engng. 28 pp 1715– (1989) · Zbl 0724.73213 · doi:10.1002/nme.1620280717
[24] Liu, ACM Trans. Math. Software 11 pp 141– (1985) · Zbl 0568.65015 · doi:10.1145/214392.214398
[25] and Direct Methods for Sparse Matrices, Oxford University Press, Oxford, 1986.
[26] Papadrakakis, Comput. Meth. Appl. Mech. Engng. 109 pp 219– (1993) · Zbl 0845.73072 · doi:10.1016/0045-7825(93)90079-D
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.