×

Landmark-based robot navigation. (English) Zbl 0939.68863


MSC:

68T40 Artificial intelligence for robotics
68U99 Computing methodologies and applications
68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
93C85 Automated systems (robots, etc.) in control theory
Full Text: DOI

References:

[1] Ayache, N.,Artificial Vision for Mobile Robots: Stereo Vision and Multisensory Perception, MIT Press, Cambridge, MA, 1991.
[2] Briggs, A. J., An efficient Algorithm for One-Step Planar Compliant Motion Planning with Uncertainty,Proc. 5th Annual ACM Symp. on Computational Geometry, Saarbruchen, 1989, pp. 187-196.
[3] Buckley, S. J.,Planning and Teaching Compliant Motion Strategies, Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 1986.
[4] Canny, J. F., On Computability of Fine Motion Plans,Proc. IEEE Internat. Conf. on Robotics and Automation, Scottsdale, AZ, 1989, pp. 177-182.
[5] Canny, J. F., and Reif, J., New Lower Bound Techniques for Robot Motion Planning Problems,Proc. 27th IEEE Symp. on Foundations of Computer Science, Los Angeles, CA, 1987, pp. 49-60.
[6] Christiansen, A., Mason, M., and Mitchell, T. M., Learning Reliable Manipulation Strategies Without Initial Physical Models,Proc. IEEE Internat. Conf. on Robotics and Automation, Cincinnati, OH, 1990, pp. 1224-1230.
[7] Crowley, J. L., World Modeling and Position Estimation for a Mobile Robot Using Ultrasonic Ranging,Proc. IEEE Internat. Conf. on Robotics and Automation, Scottsdale, AZ, 1989, pp. 674-680.
[8] Donald, B. R., A Geometric Approach to Error Detection and Recovery for Robot Motion Planning with Uncertainty,Artificial Intelligence J.,37(1-3) (1988), 223-271. · Zbl 0665.68071 · doi:10.1016/0004-3702(88)90056-2
[9] Donald, B. R., The Complexity of Planar Compliant Motion Planning Under Uncertainty,Algorithmica,5 (1990), 353-382. · Zbl 0696.68054 · doi:10.1007/BF01840394
[10] Donald, B. R., and Jennings, J., Sensor Interpretation and Task-Directed Planning Using Perceptual Equivalence Classes,Proc. IEEE Internat. Conf. on Robotics and Automation, Sacramento, CA, 1991, pp. 190-197.
[11] Dufay, B., and Latombe, J. C., An Approach to Automatic Robot Programming Based on Inductive Learning,Internat. J. Robotics Res.,3(4) (1984), 3-20. · doi:10.1177/027836498400300401
[12] Erdmann, M.,On Motion Planning with Uncertainty, Technical Report 810, Artificial Intelligence Laboratory, MIT, Cambridge, MA, 1984.
[13] Erdmann, M.,Towards Task-Level Planning: Action-Based Sensor Design, Technical Report CMU-CS-92-116, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, February 1992.
[14] Fox, A., and Hutchinson, S.,Exploiting Visual Constraints in the Synthesis of Uncertainty-Tolerant Motion Plans, Technical Report UIUC-BI-AI-RCV-92-05, The University of Illinois at Urbana-Champaign, Urbana, IL, October 1992. · Zbl 0844.70004
[15] Friedman, J.,Computational Aspects of Compliant Motion Planning, Ph.D. Dissertation, Technical Report No. STAN-CS-91-1368, Department of Computer Science, Stanford University, Stanford, CA, 1991.
[16] Gottschlich, S. N., and Kak, A. C., Dealing with Uncertainty in CAD-Based Assembly Motion Planning,Proc. 9th Nat. Conf. on Artificial Intelligence, Anaheim, CA, July 1991, pp. 646-652.
[17] Hutchinson, S., Exploiting Visual Constraints in Robot Motion Planning,Proc. IEEE Internat. Conf. of Robotics and Automation, Sacramento, CA, 1991, pp. 1722-1727.
[18] Latombe, J. C.,Robot Motion Planning, Kluwer, Boston, MA, 1991. · Zbl 0817.93045
[19] Latombe, J. C., Lazanas, A., and Shekhar, S., Robot Motion Planning with Uncertainty in Control and Sensing,Artificial Intelligence J.,52(1) (1991), 1-47. · Zbl 0817.93045 · doi:10.1016/0004-3702(91)90023-D
[20] Laugier, C., and Théveneau, P., Planning Sensor-Based Motions for Part-Mating Using Geometric Reasoning Techniques,Proc. European Conf. on Artificial Intelligence, Brighton, 1986.
[21] Lazanas, A., and Latombe, J. C.,Landmark-Based Robot Navigation, Technical Report STAN-CS-92-1428, Department of Computer Science, Stanford University, Stanford, CA, 1992. · Zbl 0939.68863
[22] Leonard, J. J., and Durrant-Whyte, H. F., Mobile Robot Localization by Tracking Geometric Beacons,IEEE Trans. Robotics Automat.,7(3) (1991), 376-382. · doi:10.1109/70.88147
[23] Levitt, T. S., Lawton, D. T., Chelberg, D. M., and Nelson, P. C, Qualitative Navigation,Proc. Image Understanding Workshop, Los Angeles, CA, 1987, pp. 447-465.
[24] Lozano-Pérez, T.,The Design of a Mechanical Assembly System, Technical Report AI-TR 397, Artificial Intelligence Laboratory, MIT, Cambridge, MA, 1976.
[25] Lozano-Pérez, T., Mason, M. T., and Taylor, R. H., Automatic Synthesis of Fine-Motion Strategies for Robots,Internat. J. Robotics Res.,3(1) (1984), 3-24. · doi:10.1177/027836498400300101
[26] Mahadevan, S., and Connell, J.,Automatic Programming of Behavior-Based Robots Using Reinforcement Learning, Research Report, IBM T.J. Watson Research Center, Yorktown Heights, NY, 1990.
[27] Mason, M. T., Automatic Planning of Fine Motions: Correctness and Completeness,Proc. IEEE Internat. Conf. on Robotics and Automation, Atlanta, GA, 1984, pp. 492-503.
[28] Natarajan, B. K., The Complexity of Fine Motion Planning,Internat. J. Robotics Res.,7(2) (1988), 36-42. · doi:10.1177/027836498800700203
[29] Preparata, F. P., and Shamos, M. I.,Computational Geometry: An Introduction, Springer-Verlag, New York, 1985. · Zbl 0575.68059
[30] Schoppers, M. J.,Representation and Automatic Synthesis of Reaction Plans, Ph.D. Dissertation, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 1989.
[31] Takeda, H., and Latombe, J. C., Sensory Uncertainty Field for Mobile Robot Navigation,Proc. IEEE Internat. Conf. on Robotics and Automation, Nice, 1992, pp. 2465-2472.
[32] Taylor, R. H.,Synthesis of Manipulator Control Programs from Task-Level Specifications, Ph.D. Dissertation, Department of Computer Science, Stanford University, Stanford, CA, 1976.
[33] Zhang, Z., and Faugeras, O., A 3D World Model Builder with a Mobile Robot,The Internat. J. of Robotics Res.,11(4) (1992), 269-285. · doi:10.1177/027836499201100401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.