×

Lower bounds for the number of resonances in even dimensional potential scattering. (English) Zbl 0939.35133

Let \(V \in {\mathbb C}_0^\infty({\mathbb R}^n,{\mathbb R})\), \(n \geq 4,\) be even, \(P=-\Delta+V\) and \(\{\lambda_j \}\) are resonances of P with multiplicity \(M(\lambda_j)\). It is proved that \[ \sum_j {M(\lambda_j) \over {|\log|\lambda_j|+i \arg\lambda_j |} } = \infty. \] As a direct consequence of this result a lower bound for the number of resonances is obtained.

MSC:

35P25 Scattering theory for PDEs
47A40 Scattering theory of linear operators
81U20 \(S\)-matrix theory, etc. in quantum theory

References:

[1] Bañuelos, R.; Sá Barreto, A., On the heat trace of Schrödinger operators, Comm. Partial Differential Equations, 20, 2153-2164 (1995) · Zbl 0843.35016
[2] Benguria, R.; Yarur, C., Sharp condition on the decay of the potential for the absence of a zero-energy ground state of the Schrödinger equation, J. Phys. A., 23, 1513-1518 (1990) · Zbl 0729.35052
[3] T. Christiansen, Some lower bounds on the number of resonances in Euclidean Scattering, preprint, 1998.; T. Christiansen, Some lower bounds on the number of resonances in Euclidean Scattering, preprint, 1998.
[4] Gohberg, I.; Krein, M., Introduction to the Theory of Linear Non-selfadjoint Operators. Introduction to the Theory of Linear Non-selfadjoint Operators, Transl. Math. Monogr., 18 (1969), Am. Math. Soc · Zbl 0181.13504
[5] Guillopé, L., Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger dans \(R^n\). Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger dans \(R^n\), Séminaire EDP Ecole Polytechnique (1984/1985) · Zbl 0597.35091
[6] Hörmander, L., The Analysis of Linear Partial Differential Operators III. The Analysis of Linear Partial Differential Operators III, A Series of Comprehensive Studies in Mathematics (1983), Springer-Verlag · Zbl 0521.35001
[7] Intissar, A., A polynomial bound on the number of the scattering poles for a potential in even dimensional spaces \(R^n\), Comm. Partial Differential Equations, 11, 367-396 (1986) · Zbl 0607.35069
[8] Jensen, A., Spectral properties of Schrödinger operators and time decay of wave functions. Results in \(L^2(R^4)\), J. Math. Anal. Appl., 101, 397-422 (1984) · Zbl 0564.35024
[9] Klopp, F.; Zworski, M., Generic simplicity of resonances, Helv. Phys. Acta, 68, 531-538 (1995) · Zbl 0844.47040
[10] Levin, B. Ja., Distributions of Zeros of Entire Functions. Distributions of Zeros of Entire Functions, Transl. Math. Monogr., 5 (1964), Am. Math. Soc · Zbl 0152.06703
[11] Melrose, R. B., Geometric Scattering Theory. Geometric Scattering Theory, Lectures at Stanford (1995), Cambridge Univ. Press · Zbl 0849.58071
[12] Popov, G., Asymptotic behaviour of the scattering phase for the Schrödinger operator, C. R. Academie Bulgare de Sciences, 35, 885-888 (1982) · Zbl 0513.35061
[13] A. Sá Barreto, and, S.-H. Tang, Existence of resonances in even dimensional potential scattering, Comm. Partial Differential Equations, to appear.; A. Sá Barreto, and, S.-H. Tang, Existence of resonances in even dimensional potential scattering, Comm. Partial Differential Equations, to appear. · Zbl 0947.35101
[14] Sá Barreto, A.; Zworski, M., Existence of resonances in three dimensions, Comm. Math. Phys., 173, 401-415 (1995) · Zbl 0835.35099
[15] Sá Barreto, A.; Zworski, M., Existence of resonances in potential scattering, Comm. Pure Appl. Math., 49, 1271-1280 (1996) · Zbl 0877.35087
[16] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. Methods of Modern Mathematical Physics, Analysis of Operators, IV (1978), Academic Press · Zbl 0401.47001
[17] Simon, B., Large time behavior of the \(L^p\) norm of Schrödinger semigroups, J. Funct. Anal., 40, 66-83 (1981) · Zbl 0478.47024
[18] Shenk, N.; Thoe, D., Resonant states and poles of the scattering matrix for perturbations of −\(Δ\), J. Math. Anal. Appl., 37, 467-491 (1972) · Zbl 0229.35072
[19] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, 2nd ed.; E. C. Titchmarsh, The Theory of Functions, Oxford University Press, 2nd ed. · Zbl 0005.21004
[20] Vodev, G., Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J., 74, 1-17 (1994) · Zbl 0813.35075
[21] Vodev, G., Sharp bounds on the number of scattering poles in the two dimensional case, Math. Nachr., 170, 287-297 (1994) · Zbl 0829.35091
[22] Zworski, M., Poisson Formulæ for Resonances (1997), Ecole PolytechniqueSeminaire EDP · Zbl 1255.35084
[23] Zworski, M., Sharp polynomial bounds on the number of scattering poles, Duke Math. J., 59, 311-323 (1989) · Zbl 0705.35099
[24] Zworski, M., Counting scattering poles, (Ikawa, M., Spectral and Scattering Theory (1994), Marcel Dekker) · Zbl 0823.35139
[25] Zworski, M., Poisson formula for resonances in even dimensions, Asian J. Math., 2, 615-624 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.