×

Optimal solution of a Monge-Kantorovitch transportation problem. (English) Zbl 0938.60012

It is well-known that, for any pair \((P,Q)\) of probability measures on a separable Banach space \(({\mathbf E},\|\cdot\|)\), under certain regularity conditions there exists a function \(f:{\mathbf E}\mapsto{\mathbf E}\) such that \(f(X)\) has the distribution \(Q\) and the pair \((X,f(X))\) is an optimal coupling for the so-called Monge-Kantorovich problem. An approximation of the function \(f\) is given when the distribution \(Q\) is discrete. An extention of this result to a general distribution \(Q\) is also considered.

MSC:

60B05 Probability measures on topological spaces
60E05 Probability distributions: general theory
60F25 \(L^p\)-limit theorems
Full Text: DOI

References:

[1] Abdellaoui, T., Détermination d’un couple optimal du problème de Monge-Kantorovitch, C.R. Acad. Sci. Paris 321 Ser., I, 235-239 (1994) · Zbl 0809.60003
[2] Abdellaoui, T.; Heinich, H., Sur la distance de deux lois de probabilités dans le cas vectoriel, C.R. Acad. Sci. Paris 319 Ser., I, 981-984 (1994) · Zbl 0809.60003
[3] T. Abdellaoui, H. Heinich, A characterization of the optimal coupling for the \(L^p Wasserstein \); T. Abdellaoui, H. Heinich, A characterization of the optimal coupling for the \(L^p Wasserstein \) · Zbl 0940.60013
[4] Bru, B.; Heinich, H.; Lootgieter, J. C., Distances de Lévy et extensions des théorèmes de la limite centrale et de Glivenko-Cantelli, Pub. Inst. Stat. Univ. Paris XXXVII, 29-42 (1993), fasc. 3-4 · Zbl 0786.60006
[5] Cuesta, J. A.; Matran, C., Notes on the wasserstein metric in Hilbert spaces, Ann. Probab., 17, 1264-1276 (1989) · Zbl 0688.60011
[6] Cuesta-Albertos, J. A.; Ruschendorf, L.; Tuero-Diaz, A., Optimal coupling of multivariate distributions and stochastic processes, J. Multivariate Anal., 46, 335-361 (1993) · Zbl 0788.60025
[7] Cuesta-Albertos, J. A.; Tuero-Diaz, A., A characterization for the solution of the Monge-Kantorovitch mass transference problem, Statist. Probab. Lett., 16, 147-152 (1993) · Zbl 0765.60010
[8] Cuesta-Albertos, J. A.; Matran, C.; Rachev, S. T.; Rueschen-Dorf, L., Mass transportation problems in probability theory, Appl Probab. Trust., 21, 1-39 (1996) · Zbl 0860.60083
[9] Cuesta-Albertos, J. A.; Matran, C.; Tuero-Diaz, A., On lower bounds for the \(L^2\) wasserstein metric in a Hilbert space, J. Theoret. Probab., 9, 263-283 (1996) · Zbl 0870.60005
[10] Knott, M.; Smith, C. S., On the optimal mapping of distributions, J. Oper. Theor. Appl., 43, 39-49 (1984) · Zbl 0519.60010
[11] Knott, M.; Smith, C. S., Note on the optimal transportation of distributions, J. Oper. Theor. Appl., 52, 323-329 (1987) · Zbl 0586.49005
[12] Rachev, S. T., Probability Metrics and the Stability of Stochastic Models (1991), Wiley: Wiley New York · Zbl 0725.60002
[13] Rachev, S. T.; Rueschendorf, L., A characterization of random variables with minimum \(L^2\) distance, J. Multivariate Anal., 32, 48-54 (1990) · Zbl 0688.62034
[14] Rachev, S. T., The Monge-Kantorovitch mass transference problem and its stochastic application, Theory Probab. Appl., 29, 647-676 (1984) · Zbl 0581.60010
[15] Rueschendorf, L., Optimal solutions of multivariate coupling problems, Appl. Math., 23, 325-338 (1995) · Zbl 0844.62047
[16] Sibony, M.; Mardon, J. Cl., Analyse numérique I, Systèmes linéaires et non linéaires (1982), Hermann: Hermann Paris
[17] Tuero-Diaz, A., On the sochastic cnvergence of representations based on wasserstein metrics, Ann. Probab., 21, 72-85 (1993) · Zbl 0770.60012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.