×

On the two-dimensional stochastic Ising model in the phase coexistence region near the critical point. (English) Zbl 0937.82004

Summary: We consider the two-dimensional stochastic Ising model in finite square \(\Lambda\) with free boundary conditions, at inverse temperature \(\beta >\beta_c\) and zero external field. Using duality and recent results of D. Ioffe [J. Stat. Phys. 74, 411-432 (1994)] on the Wulff construction close to the critical temperature, we extend some of the results obtained by F. Martinelli [J. Stat. Phys. 76, 1179-1246 (1994; Zbl 0839.60087)] in the low-temperature regime to any temperature below the critical one. In particular we show that the gap in the spectrum of the generator of the dynamics goes to zero in the thermodynamic limit as an exponential of the side length of \(\Lambda\), with a rate constant determined by the surface tension along one of the coordinate axes. We also extend to the same range of temperatures the result due to S. B. Shlosman [Commun. Math. Phys. 125, 81-90 (1989; Zbl 0679.60099)] on the equilibrium large deviations of the magnetization with free boundary conditions.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B26 Phase transitions (general) in equilibrium statistical mechanics
Full Text: DOI

References:

[1] J. Chayes, L. Chayes, and R. H. Schonmann, Exponential decay of connectivity in the two-dimensional Ising model,J. Stat. Phys. 49:433 (1987). · Zbl 0962.82522 · doi:10.1007/BF01009344
[2] R. Dobrushin, R. Kotecký, and S. Shlosman,Wulff Construction. A Global Shape from Local Interaction (American Mathematical Society, Providence, Rhode Island, 1992). · Zbl 0917.60103
[3] R. L. Dobrushin and S. Shlosman, Constructive criterion for the uniqueness of Gibbs fields, inStatistical Physics and Dynamical Systems, Fritz, Jaffe, and Szász, eds. (Birkhauser, Boston, 1985), p. 347. · Zbl 0569.46042
[4] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89 (1971). · Zbl 0346.06011 · doi:10.1007/BF01651330
[5] Y. Higuchi, Coexistence of infinite (*)-cluster II: Ising percolation in two dimension,Prob. Theory Related Fields 97:1 (1993). · Zbl 0794.60102 · doi:10.1007/BF01199310
[6] Y. Higuchi and N. Yoshida, Slow relaxation of 2D-stochastic Ising models at low temperature, preprint (1995).
[7] D. Ioffe, Large deviation for the 2D Ising model: A lower bound without cluster expansion,J. Stat. Phys. 74(1/2):411 (1994). · Zbl 0946.82502 · doi:10.1007/BF02186818
[8] D. Ioffe, Exact large deviation bounds up toT c for the Ising model in two dimensions, preprint (1994).
[9] M. Jerrum and A. Sinclair, Polynomial-time approximation algorithms for the Ising model,SIAM J. Comput. 22:1087 (1993). · Zbl 0782.05076 · doi:10.1137/0222066
[10] T. M. Ligget,Interacting Particles Systems (Springer-Verlag, Berlin, 1985).
[11] F. Martinelli, On the two dimensional dynamical Ising model in the phase coexistence region,J. Stat. Phys. 76(5/6):1179 (1994). · Zbl 0840.58029 · doi:10.1007/BF02187060
[12] E. Marcelli and F. Martinelli, Some new results on the 2d kinetic Ising model in the phase coexistence region, preprint (1995). · Zbl 1081.82592
[13] F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I: The attractive case,Commun. Math. Phys. 161:447 (1994). · Zbl 0793.60110 · doi:10.1007/BF02101929
[14] F. Martinelli, E. Olivieri, and R. H. Schonmann, For Gibbs state of 2D lattice spin systems weak mixing implies strong mixing,Commun. Math. Phys. 165:33 (1994). · Zbl 0811.60097 · doi:10.1007/BF02099735
[15] F. Martinelli, E. Olivieri, and E. Scoppola, Metastability and exponential approach to equilibrium for low temperature stochastic Ising model,J. Stat. Phys. 61:1105 (1990). · Zbl 0739.60096 · doi:10.1007/BF01014367
[16] C. E. Pfister, Large deviations and phase separation in the two-dimensional Ising model,Helv. Phys. Acta 64:953 (1991).
[17] S. B. Shlosman, The droplet in the tube: A case of phase transition in the canonical ensemble,Commun. Math. Phys. 125:81 (1989). · Zbl 0679.60099 · doi:10.1007/BF01217770
[18] B. Simon, Correlation inequalities and the decay of correlations in ferromagnets,Commun. Math. Phys. 77:111 (1980). · doi:10.1007/BF01982711
[19] R. H. Schonmann and S. B. Shlosman, Complete analiticity for 2D Ising model completed,Commun. Math. Phys. 170:453 (1995). · Zbl 0821.60097 · doi:10.1007/BF02108338
[20] R. H. Schonmann and S. B. Shlosman, Constrained variational problems with applications to the Ising model, preprint. · Zbl 1081.82547
[21] R. H. Schonmann and S. B. Shlosman, In preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.