×

Wavelet modelling of high resolution radar imaging and clinical magnetic resonance tomography. (English) Zbl 0935.92025

The paper leads from Keppler to Heisenberg in order to demonstrate the tight control which Lie group theory exercises over the non-invasive MRI modality via the geometric quantization strategy. For the first time, it allows for a visualization of the coadjoint orbit fibration associated to the coadjoint \(G\)-action in the dual vector space Lie\((G)^*\) of the Heisenberg Lie algebra Lie\((G)\) as a stack of energetic strata forming tomographic slices, and the associated bundle of \({\mathcal C}^*\)-algebras. In addition, the paper offers the three-dimensional compact super-encoding projective space \({\mathbf P}({\mathbf R}\times \text{Lie}(G)^*)\) with homogeneous transverse direction line \({\mathbf R}\) as the natural frame of the solvable affine Lauterbur subband encoding technique of spatial localization by directional derivatives, or linear magnetic field gradients. The three-dimensional real projective space \({\mathbf P}({\mathbf R}\times \text{Lie}(G)^*)\) represents the frame for the line geometric implementation of the Larmor equation for the magnetic spin precession. The planar frame is performed by the de Rham cohomology associated to the \(L^2\)-sections of the homogeneous line bundle of transvections over the projectively immersed, natural symplectic affine structure of the planar coadjoint orbits \({\mathcal O}_\nu (\nu\neq 0)\) of \(G\), and its rotational curvature form.
Tomographic slice selection, readout procedure, and phase encoding linear gradients operating on the \(L^2\)-sections of a homogeneous hologram line bundle perform the basic MRI functions and are refocused in every repetition period. The refocusing procedures by spatial rewinder gradients and phase conjugation flip depend on Fourier analysis of the metaplectic group pointwise attached to the one-dimensional center \(C\) of \(G\) as a group of dynamical symmetries specific for the selected energetic stratum. Each point \(\nu\) of the line \(\check C-\{0\}\) with the origin removed corresponds to the distinguished closed exterior differential 2-form \(\omega_\nu\) associated to the curvature form of the planar coadjoint orbit \({\mathcal O}_\nu \hookrightarrow\text{Lie}(G)^* (\nu\neq 0)\) of \(G\) which is immersed as a linear symplectic affine variety into the three-dimensional compact super-encoding projective space \({\mathbf P}({\mathbf R}\times \text{Lie} (G)^*)\). Similar to the refocusing procedures by spatial rewinder gradients, the rephasing procedure of spin echoes by phase conjugation flip depends upon the fact that the normal subgroup \({\mathbf G}{\mathbf O}^+(2,{\mathbf R})\) of direct linear similitudes has index two in the non-abelian group \({\mathbf G} {\mathbf O}(2,{\mathbf R})\) of all linear similitudes of the symplectic affine plane \({\mathbf R}\oplus{\mathbf R}\).
The fascinating aspects of electronic engineering concerned with the implementation of the dynamical symmetries inherent to the semi-classical approach to clinical magnetic resonance tomography by large scale integrated (LSI) microcircuit technology are also indicated. Once greater understanding has been gained in the quantized calculus foundations of MRI, and the dynamical system approach to the solvable affine Lauterbur subband encoding technique of spatial localization by linear magnetic field gradients operating on the \(L^2\)-sections of a homogeneous hologram line bundle, it will be possible to design new wavelet packets of spin excitation profiles with the desired contrast resolution capability.

MSC:

92C55 Biomedical imaging and signal processing
81S10 Geometry and quantization, symplectic methods
17B37 Quantum groups (quantized enveloping algebras) and related deformations
57T10 Homology and cohomology of Lie groups
81V99 Applications of quantum theory to specific physical systems
Full Text: DOI

References:

[1] S.W. Atlas, editor, Magnetic Resonance Imaging of the Brain and Spine. Second edition, Lippincott-Raven Publishers, Philadelphia, New York 1996
[2] C.M. Anderson, R.R. Edelman, and P.A. Turski, Clinical Magnetic Reesonance Angiography. Raven Press, New York 1993
[3] G.H. Barnett, C.P. Steiner, and J. Weisenberger, Intracranial meningioma resection using frameless stereotaxy. J. Image Guided Surgery 1, 46–52 (1955) · doi:10.1002/(SICI)1522-712X(1995)1:1<46::AID-IGS7>3.0.CO;2-M
[4] R. Bauer, E. van de Flierdt, K. Mörike, and C. Wagner-Manslau, MR Tomography of the Central Nervous System. Gustav Fischer Verlag, Stuttgart, Jena, New York 1993
[5] J. Beltran, editor, Current Review of MRI. First edition, Current Medicine, Philadelphia 1995
[6] J.H. Bisese, A.-M. Wang, Pediatric Cranial MRI: An Atlas of Normal Development. Springer-Verlag, New York, Berlin, Heidelberg 1994
[7] S. Braitinger, J. Pahnke, Hrsg., editors, MR-Atlas der HNO-Anatomie, MR Atlas of ENT Anatomy. Bilingual Eurobook, F.K. Schattauer, Stuttgart, New York 1995
[8] J.J. Brown, F.J. Wippold II, Practical MRI: A Teaching File. Lippincott-Raven Publishers, Philadelphia, New York 1996
[9] D.R. Cahill, M.J. Orland, and G.M. Miller, Atlas of Human Cross-Sectional Anatomy, with CT and MR Images. Third edition, Wiley-Liss, New York, Chichester, Brisbane 1995
[10] M. Castillo, S.K. Mukherji, Imaging of the Pediatric Head, Neck, and Spine. Lippincott-Raven Publishers, Philadelphia, New York 1996
[11] M.S. Cohen, Rapid MRI and functional applications. In: Brain Mappping-The Methods, A.W. Toga, J.C. Mazziotta, editors, pp. 223–255, Academic Press, San Diego, New York, Boston 1996
[12] L.J. Cutrona, E.M. Leith, L.J. Porcello, and W.E. Vivian, On the application of coherent optical processing techniques to synthetic-aperture radar. Proc. IEEE 54, 1026–1032 (1966) · doi:10.1109/PROC.1966.4987
[13] H. Damasio, Human Brain Anatomy in Computerized Images. Oxford Univiversity Press, Oxford, New York 1995
[14] E.R. Davies, Electronics, Noise and Signal Recovery. Academic Press, London, San Diego, New York 1993
[15] P.L. Davis, editor, Breast Imaging. MRI Clinics of North America, Vol. 2, No. 4, November 1994, pp. 505–740, W.B. Saunders Company, Philadelphia, London, Toronto 1994
[16] G. Deleuze, F. Guattari, Q’est-ce que la philosophie? Les Éditions de Minuit, Paris 1991
[17] P. De Potter, C.L. Shields, and J.A. Shields, MRI of the Eye and Orbit. Lippincott-Raven Publishers, Philadelphia, New York 1995
[18] S.J. Doran, P. Jakob, and M. Décorps, Rapid repetition of the ”burst” sequence: The role of diffusion and consequences for imaging. Magn. Reson. Med. 35, 547–553 (1996) · doi:10.1002/mrm.1910350414
[19] R.R. Edelman, J.R. Hesselink, and M.B. Zlatkin, Clinical Magnetic Resonance Imaging. Two volumes, second edition, W.B. Saunders Company, Philadelphia, London, Toronto 1996
[20] G.Y. El-Khoury, R.A. Bergman, and W.J. Montgomery, Sectional Anatomy by MRI. Second edition, Churchill Livingstone, New York, Edinburgh, London 1995
[21] J. Fleckenstein, J.V. Crues III, and CD. Reimers, Muscle Imgaging in Health and Disease. Springer-Verlag, Berlin, Heidelberg, New York 1996
[22] D.G. Gadian, NMR and its Applications to Living Systems. Second edition, Oxford University Press, Oxford, New York, Tokyo 1996
[23] A.E. George, Neurodegenerative diseases: Alzheimer’s disease and related disorders. Neuroimaging Clinics of North America, Vol. 5, No. 1, February 1995, pp. 1–159, W.B. Saunders Company, Philadelphia, London, Toronto 1995
[24] O. Gingerich, Kepler’s place in astronomy. In Kepler: Four Hundred Years. Proceedings of Conferences held in Honour of Johannes Kepler, A. Beer, and P. Beer, editors, Vistas in Astronomy, Vol. 18, pp. 261–278, Pergamon Press, Oxford, New York, Toronto 1975
[25] C.B. Grossman, Magnetic Resonance Imaging and Computed Tomography of the Head and Spine. Second edition, Williams &amp; Wilkins, Baltimore, Philadelphia, London 1996
[26] R.I. Grossman, D.M. Yousem, Neuroradiology. Mosby-Year Book, St. Louis, Baltimore, Berlin 1994
[27] D.M. Healy, Jr., J. Lu, and J.B. Weaver, Two applications of wavelets and related techniques in medical imaging. Ann. Biomed. Eng. 23, 637–665 (1995) · doi:10.1007/BF02584462
[28] R.M. Henkelman, M.J. Bronskill, Artifacts in magnetic resonance imaging. Rev. Magn. Reson. Med. 2, 1–126 (1987)
[29] A. Heuck, G. Luttke, and J.W. Rohen, MR-Atlas der Extremitäten. F.K. Schattauer, Stuttgart, New York 1994
[30] S.H. Heywang-Köbrunner, R. Beck, Contrast-Enhanced MRI of the Breast. Second edition, Springer-Verlag, Berlin, Heidelberg, New York 1996
[31] S.H. Heywang-Köbrunner, I. Schreer, Bildgebende Mammadiagnostik: Untersuchungstechnik, Befundmuster und Differentialdiagnostik in Mammographie, Sonographie und Kernspintomographie. Georg Thieme Verlag, Stuttgart, New York 1996
[32] P. Horowitz, W. Hill, The Art of Electronics. Second edition, Cambridge University Press, Cambridge, New York, Port Chester 1990
[33] P.M. Jakob, F. Kober, and A. Haase, Radial BURST Imaging. Magn. Reson. Med. 36, 557–561 (1996) · doi:10.1002/mrm.1910360409
[34] F.A. Jolesz, MRI-guided interventions. In: Progressi in RM, Note di tecnica, a cura di M. Cammisa, T. Scarabino, pp. 199-220, Guido Gnocchi, Editore, Napoli 1995
[35] W.A. Kaiser, MR Mammography (MRM). Springer-Verlag, Berlin, Heidelberg, New York 1993
[36] M. King, Fourier optics and radar signal processing. In: Applications of Optical Fourier Transforms. H. Stark, editor, pp. 209–251, Academic Press, Orlando, San Diego, San Francisco 1982
[37] H.-J. Kretschmann, W. Weinrich, Dreidimensionale Computergraphik neurofunktioneller Systeme: Grundlagen für die neurologisch-topische Diagnostik und die kranielle Bilddiagnostik (Magnetresonanztomographie und Computertomographie). Georg Thieme Verlag, Stuttgart, New York 1996
[38] J. Kucharczyk, M.E. Moseley, T. Roberts, and W.W. Orrison, Jr., editors, Functional neuroimaging. Neuroimaging Clinics of North America, Vol. 5, No. 2, May 1995, pp. 161–308, W.B. Saunders Company, Philadelphia, London, Toronto 1995
[39] R.I. Kuzniecky, G.D. Jackson, Magnetic Resonance in Epilepsy. Raven Press, New York 1995
[40] A. Kumar, D. Welti, and R.R. Ernst, NMR Fourier zeugmatography. J. Magn. Reson. 18, 69–83 (1975)
[41] K. Kwong, Functional magnetic resonance imaging with echo planar imaging. Magn. Reson. Quart. 11, 1–20 (1995)
[42] E.N. Leith, Synthetic aperture radar. In: Optical Data Processing, D. Casasent, editor, pp. 89–117, Topics in Applied Physics, Vol. 23, Springer-Verlag, Berlin, Heidelberg, New York 1978
[43] E.N. Leith, Optical processing of synthetic aperture radar data. In: Photonic Aspects of Modern Radar, H. Zmuda, E.N. Toughlian, editors, pp. 381–401, Artech House, Boston, London 1994
[44] P.J. Marcer, W. Schempp, A mathematically specified template for DNA and the genetic code in terms of the physically realisable processes of quantum holography. In: Proc. Symp. Living Computers: The Nature of Turing and Non-Turing Reproducible Order in Living Organisms, A.M. Fedorec, P.J. Marcer, editors, pp. 45–62, The British Computer Society, Greenwich University Press, London 1996
[45] J. Mattson, M. Simon, The Pioneers of NMR and Magnetic Resonance in Medicine: The Story of MRI. Bar-Ilan University Press, Ramat Gan 1996
[46] C. Mead, L. Conway, Introduction to VLSI Systems. Addison-Wesley Publishing Company, Reading, Menlo Park, London 1980
[47] T.B. Möller, E. Reif, MRI Atlas of the Musculoskeletal System. Blackwell Scientific Publications, Boston, Oxford, London 1993
[48] C.T.W. Moonen, P. van Gelderen, N. Ramsey, G. Liu, J.H. Duyn, J. Frank, and D.R. Weinberger, PRESTO, a rapid 3D approach for functional MRI of human brain. In: Syllabus Functional MRI, P. Pavone and P. Rossi, editors, pp. 105–110, Springer-Verlag, Berlin, Heidelberg, New York 1996
[49] P.L. Munk, C.A. Helms, MRI of the Knee. Second edition, Lippincott-Raven Publishers, Philadelphia, New York 1996
[50] M. Nägele, G. Adam, Moderne Kniegelenkdiagnostik: Bildgebende Verfahren und klinische Aspekte. Springer-Verlag, Berlin, Heidelberg, New York 1995
[51] W. Noack, editor, X-SAR Picture Book. Springer-Verlag, Berlin, Heidelberg, New York 1997
[52] E.J. Potchen, E.M. Haacke, J.E. Siebert, and A. Gottschalk, Magnetic Resonance Angiography: Concepts and Applications. Mosby-Year Book, St. Louis, Baltimore, Boston 1993
[53] V. Rasche, R.W. de Boer, D. Holz, and R. Proksa, Continuous radial data acquisition for dynamic MRI. Magn. Reson. Med. 34, 754–761 (1995) · doi:10.1002/mrm.1910340515
[54] V. Rasche, D. Holz, and W. Schepper, Radial turbo spin echo imaging. Magn. Reson. Med. 32, 629–638 (1994) · doi:10.1002/mrm.1910320512
[55] P.B. Roemer, W.A. Edelstein, C.E. Hayes, S.P. Souza, and O.M. Mueller, The NMR phased array. Magn. Reson. Med. 16, 192–252 (1990) · doi:10.1002/mrm.1910160203
[56] V.M. Runge, editor, Magnetic Resonance Imaging: Clinical Principles. J.B. Lippincott Company, Philadelphia, New York, London 1992
[57] V.M. Runge, Magnetic Resonance Imaging of the Brain. J.B. Lippincott Company, Philadelphia 1994
[58] K. Sartor, MR Imaging of the Skull and Brain. Springer-Verlag, Berlin, Heidelberg, New York 1995
[59] W. Schempp, Harmonic Analysis on the Heisenberg Nilpotent Lie Group, with Applications to Signal Theory. Pitman Research Notes in Mathematics Series, Vol. 147, Longman Scientific and Technical, London 1986 · Zbl 0632.43001
[60] W. Schempp, Geometric analysis: The double-slit interference experiment and magnetic resonance imaging. Cybernetics and Systems ’96, Vol. 1, pp. 179–183, Austrian Society for Cybernetic Studies, Vienna 1996 · Zbl 1051.81717
[61] W. Schempp, Geometric analysis and symbol calculus: Fourier transform magnetic resonance imaging and wavelets. In: Synergie, Syntropie, Nichtlineare Systeme, Wiener-Symposium, Heft 4, W. Eisenberg, U. Renner, S. Trimper, M. Kunz und K. Vogelsang, Hrsg., pp. 133–186, Verlag im Wissenschaftszentrum Leipzig, Leipzig1996 · Zbl 0867.42020
[62] W. Schempp, Non-commutative affine geometry and symbolic calculus: Fourier transform magnetic resonance imaging and wavelets. In: Signal and Image Representation in Combined Spaces, J. Zeevi and R.R. Coifman, editors, pp. 1–47, Academic Press, London, San Diego, New York 1997
[63] W. Schempp, Wavelets in high-resolution radar imaging and clinical resonance tomography. Cybernetics and Systems: An International Journal 28, 1–23 (1997) · Zbl 0864.94011 · doi:10.1080/019697297126227
[64] W. Schempp, Wavelets in high resolution radar imaging and clinical magnetic resonance imaging. Proc. IWISP ’96: Third International Workshop on Image and Signal Processing on the Theme of Advance in Computational Intelligence, Manchester, United Kingdom, B.G. Mertzios, P. Liatsis, editors, pp. 73–80, Elsevier, Amsterdam, Lausanne, New York 1996
[65] W. Schempp, Magnetic Resonance Imaging: Mathematical Foundations and Applications. John Wiley &amp; Sons, New York, Chichester, Brisbane (in print) · Zbl 0930.92015
[66] A.G. Sorensen, MR imaging in hyperacute stroke. In: Syllabus Functional MRI, P. Pavone and P. Rossi, editors, pp. 99–102, Springer-Verlag, Berlin, Heidelberg, New York 1996
[67] H. Stefan, Epilepsien: Diagnose und Behandlung. Chapman &amp; Hall, London, Glasgow, Weinheim 1995
[68] B. Stephenson, Kepler’s Physical Astronomy. Princeton University Press, Princeton, NJ 1994 · Zbl 0802.01013
[69] P. Stoeter, P. Gutjahr, und K. Brühl, Tumoren bei Kindern: Moderne Bildgebung mit MRT und CT, Band 1: ZNS. Georg Thieme Verlag, Stuttgart, New York 1996
[70] D.W. Stoller, editor, Magnetic Resonance Imaging in Orthopaedics &amp; Sports Medicine. Second edition, Lippincott-Raven Publishers, Philadelphia, New York 1997
[71] H. Strunk, P. Gutjahr, Tumoren bei Kindern: Moderne Bildgebung mit MRT und CT, Band 2: Körperstamm und Extremitäten. Georg Thieme Verlag, Stuttgart, New York 1996
[72] K.R. Thulborn, J. Voyvodic, B. McCurtain, J. Gillen, S. Chang, M. Just, P. Carpenter, and J.A. Sweeney, High field functional MRI in humans: Applications to cognitive functions. In: Syllabus Functional MRI, P. Pavone and P. Rossi, editors, pp. 91–96, Springer-Verlag, Berlin, Heidelberg, New York 1996
[73] C.L. Truwit, T.E. Lempert, High Resolution Atlas of Cranial Neuroanatomy. Williams &amp; Wilkins, Baltimore, Philadelphia, Hong Kong 1994
[74] D. Uhlenbrock, MRT und MRA des Kopfes: Indikationsstellung, Wahl der Untersuchungsparameter, Befundinterpretation. Georg Thieme Verlag, Stuttgart, New York 1996
[75] M.S. van der Knaap, J. Valk, Magnetic Resonance of Myelin, Myelination, and Myelin Disorders. Second edition, Springer-Verlag, Berlin, Heidelberg, New York 1995
[76] T.J. Vogl, MR-Angiographie und MR-Tomographie des Gefäßsystems: Klinische Diagnostik. Springer-Verlag, Berlin, Heidelberg, New York 1995
[77] D.R. Wehner, High Resolution Radar. Artech House, Norwood, MA 1987
[78] A. Weil, Sur certains groupes d’opérateurs unitaires. Acta Math. 111, 143–211 (1964). In: OEuvres Scientifiques, Collected Papers, Vol. III (1964–1978), pp. 1-69, Springer-Verlag, New York, Heidelberg, Berlin 1980 · Zbl 0203.03305 · doi:10.1007/BF02391012
[79] M.V. Wickerhauser, Costum wavelet packet image compression design. Proc. IWISP ’96: Third International Workshop on Image and Signal Processing on the Theme of Advance in Computational Intelligence, Manchester, United Kingdom, B.G. Mertzios, P. Liatsis, editors, pp. 47–52, Elsevier, Amsterdam, Lausanne, New York 1996
[80] D.H. Yock, Jr., Magnetic Resonance Imaging of CNS Disease: A Teaching File. Mosby-Year Book, St. Louis, Baltimore, Berlin 1995
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.