×

Weakly hyperbolic equations in domains with boundaries. (English) Zbl 0933.34067

The authors consider the abstract degenerate equation of the type \[ u_{tt}(t) +a(t)Au(t) =f\bigl(t,u(t)\bigr), \quad t\in[0,T], \tag{1} \]
\[ u(0)=u_0, \quad u_t(0)= u_1,\tag{2} \]
\[ u(t)\in D(A),\quad t\in[0,T],\tag{3} \] where \(u\) maps \([0,T]\) into a separable Hilbert space \(H\), \(0\leq T\leq\infty\), and \(A\) is a nonnegative selfadjoint operator.
Firstly, the global well-posedness of the abstract linearized system (1)–(3), \(f=h(t)\), is investigated under the assumption
\((H_1)\) there exists a sequence \((t_j)_j \subset [0, \infty)\) decreasing (or increasing) to some \(t_0\in [0,\infty)\) such that \[ a\in C^1\bigl([0, \infty)\subset \cup_j\{t_j\}, \mathbb{R}\bigr), \quad a\geq 0, \] and \[ \sum_{j \in\mathbb{N}} \int^{t_{j+1}}_{t_j} {\bigl|a'(r)\bigr |\over a(r)+ \varepsilon} dr\leq M|\log \varepsilon |,\quad \varepsilon\in(0, \varepsilon_0]\text{ for some }\varepsilon_0 \in(0,1), \] and respectively
\((H_2)\) \(a\geq 0\) and \(a\in C^1([0,\infty),\mathbb{R})\), \(a'\geq 0\) or \(a'\leq 0\).
It is proved that the linearized system has a unique solution which satisfies a certain estimate.
For the nonlinear problem (1)–(3) it is shown a local existence theorem using a fixed point argument. More exactly, the authors prove that there exists a unique solution to (1)–(3) in the hypothesis \((H_2)\) and assuming that \(f:[0,T]\times H\to H\) is smooth and for \(s>0\), there is a nondecreasing function \(\varphi_s:[0,\infty)\to[0,\infty)\) and a function \(\psi_s: [0,\infty) \times[0,\infty) \to[0,\infty)\) nondecreasing in each component, such that for \(B:=C^0 ([0,T],D(A^s))\) we have
(4) \(\forall w\in B\), \(\forall t\in[0,T]: \|f(t,w(t)) \|_{D(A^s)} \leq\varphi_s (\|w(t) \|_{D(A^s)}) \cdot\|w(t)\|_{D (A^s)}\),
(5) \(\forall u,w\in B:\|f(\cdot,u)- f(\cdot,w) \|_B\leq\psi_s (\|u\|_B,\|w\|_B)\cdot \|u-w \|_B\).
These results are applied to the weakly hyperbolic initial-boundary value problem \[ u_{tt}(t,x)-a(t)\sum^n_{i,k=1} \partial_i a_{ik} (x)\partial_k u(t,x)=f(t,x, u(t,x)), \]
\[ u(0,x)= u_0(x),\;u_t(0,x)= u_1(x), \quad x\in \Omega, \]
\[ u(t,\cdot) |_{\partial \Omega}=0\quad \text{resp. }\nu_i(\cdot) a_{ik}(\cdot) \partial_ku(t,\cdot) |_{\partial \Omega} =0,\;t\geq 0. \] The paper finishes with remarks concerning the case when \(A\) has additional, negative eigenvalues.

MSC:

34G20 Nonlinear differential equations in abstract spaces
35L05 Wave equation
35L15 Initial value problems for second-order hyperbolic equations
Full Text: DOI

References:

[1] Oleinik, O. A., The Cauchy problem and the boundary value problem for second-order hyperbolic equations degenerating in a domain and on its boundary, Sov. Math. Dokl.,, 7, 969-973 (1966) · Zbl 0173.37601
[2] Colombini, S.; Spagnolo, S., An example of a weakly hyperbolic Cauchy problem not well posed in \(C^∞\), Acta Math.,, 148, 243-253 (1982) · Zbl 0517.35053
[3] Tarama, S., On the second order hyperbolic equations degenerating in the infinite order — example, Math. Japonica,, 42, 523-534 (1995) · Zbl 0837.35097
[4] S. Spagnolo, Analytic solutions to nonlinear weakly hyperbolic equations, Ric. Mat., 40 (1991) Suppl. 241-254.; S. Spagnolo, Analytic solutions to nonlinear weakly hyperbolic equations, Ric. Mat., 40 (1991) Suppl. 241-254. · Zbl 0799.35158
[5] P. D’Ancona, S. Spagnolo, On the life span of the analytic solutions to quasilinear weakly hyperbolic equations. Indiana Univ, Math. J., 40 (1991) 71-99.; P. D’Ancona, S. Spagnolo, On the life span of the analytic solutions to quasilinear weakly hyperbolic equations. Indiana Univ, Math. J., 40 (1991) 71-99. · Zbl 0729.35012
[6] Kajitani, K., Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Hokkaido Math. J.,, 12, 434-460 (1983)
[7] Kajitani, K.; Wakabayashi, S., The hyperbolic mixed problem in Gevrey classes, Japan J. Math.,, 15, 309-383 (1989) · Zbl 0706.35081
[8] Colombini, F.; Jannelli, S.; Spagnolo, S., Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa,, 10, 291-312 (1983) · Zbl 0543.35056
[9] K. Kajitani, The well posed Cauchy problem for hyperbolic operators. Exposé au Séminaire de Vaillant, (1989).; K. Kajitani, The well posed Cauchy problem for hyperbolic operators. Exposé au Séminaire de Vaillant, (1989).
[10] Oleinik, O. A., On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math.,, 23, 569-586 (1970)
[11] Nishitani, T., The Cauchy problem for weakly hyperbolic equations of second order, Comm. PDE,, 5, 1273-1296 (1980) · Zbl 0497.35053
[12] P. D’Ancona, Well posedness in \(C^∞\); P. D’Ancona, Well posedness in \(C^∞\)
[13] P. D’Ancona, Local existence for semilinear weakly hyperbolic equations with time dependent coefficients, Nonlinear Anal., 21 (1993) 685-696.; P. D’Ancona, Local existence for semilinear weakly hyperbolic equations with time dependent coefficients, Nonlinear Anal., 21 (1993) 685-696. · Zbl 0830.35089
[14] Manfrin, R., A solvability result for a nonlinear weakly hyperbolic equation of second order, NoDEA,, 2, 245-264 (1995) · Zbl 0836.35095
[15] M. Reissig, Weakly hyperbolic equations with time degeneracy in Sobolev spaces. Preprint 96 - 07, Techn. University of Freiberg, (1996).; M. Reissig, Weakly hyperbolic equations with time degeneracy in Sobolev spaces. Preprint 96 - 07, Techn. University of Freiberg, (1996). · Zbl 0938.35109
[16] Baranovskii, F. T., A boundary-value problem for a hyperbolic equation with degenerate principal part, Ukrain. Math. J.,, 31, 177-184 (1979) · Zbl 0428.35058
[17] Kimura, K., A mixed problem for weakly hyperbolic equations of second order, Comm. PDE,, 6, 1335-1361 (1981) · Zbl 0492.35052
[18] Kubo, A., Mixed problems for some weakly hyperbolic second order equations,, Math. Japonica,, 29, 721-751 (1984) · Zbl 0599.35110
[19] Kubo, A., On the mixed problems for weakly hyperbolic equations of second order, Comm. PDE,, 9, 889-917 (1984) · Zbl 0548.35076
[20] Kubo, A., Well posedness for the mixed problems of degenerate hyperbolic equations, Funkcial. Ekvac.,, 34, 95-102 (1991) · Zbl 0789.35115
[21] Taniguchi, M., Mixed problem for weakly hyperbolic equations of second order with degenerate Neumann boundary condition, Funkcial. Ekvac., 27, 331-366 (1984) · Zbl 0595.35075
[22] Taniguchi, M., Mixed problem for weakly hyperbolic equations of second order with degenerate first order boundary condition, Tokyo J. Math.,, 7, 61-98 (1984) · Zbl 0555.35074
[23] Yamazaki, T., Unique existence of evolution equations of hyperbolic type with countably many singular of degenerate points, J. Differential Equations,, 77, 38-72 (1989) · Zbl 0671.34003
[24] D. Huet, Décomposition spectrale et opérateurs, Presses Universitaires de France, (1976).; D. Huet, Décomposition spectrale et opérateurs, Presses Universitaires de France, (1976). · Zbl 0334.47015
[25] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris, (1968).; J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris, (1968). · Zbl 0165.10801
[26] Reed, M.; Simon, B., Methods of Modern Mathematical Physics IV. Analysis of Operators. (1978), Academic Press: Academic Press San Diego · Zbl 0401.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.