×

Periodic solutions of evolution \(p\)-Laplacian equations with nonlinear sources. (English) Zbl 0932.35127

Time-periodic solutions to the \(p\)-Laplacian evolution equations \[ \partial u/\partial t= \text{div} (|\nabla u |^{p-2}\nabla u)+ m( x, t) u^\alpha \quad \text{in } \Omega\times \mathbb{R}\tag{1} \] and \[ \partial u/\partial t= \sum_{i=1}^N \partial/\partial x_i (|\partial u/\partial x_i|^{p-2}\partial u/\partial x_i)+ m(x,t)u^\alpha \quad \text{in } \Omega \times \mathbb{R}\tag{2} \] are sought on a bounded convex domain \(\Omega \subset \mathbb{R}^N\), for \(N\), and \(p \geq 2\), zero Dirichlet conditions being required on the smooth boundary \( \partial \Omega \). The source term \(m(x,t)\) is assumed to be positive, continuous on \(\bar \Omega \times \mathbb{R} \) and to be \(t\)-periodic, with some period \(\omega > 0\). For the case of strongly nonlinear sources, namely \(\alpha > p-1\), a blow-up (scaling) argument is employed to deduce the existence of nonnegative continuous periodic solutions to (1), provided \(p,\alpha + 1 < p ( 1 + 1/N)\). The same argument applies also to (2), the solution in the former case satisfying \(u \in C(0, \omega; W_0^{1,p}(\Omega)) \cap C_\omega (\overline {Q})\), \(\partial u /\partial t \in L^2(Q)\) while in the latter it is \(u \in C(0, \omega; W_0^{1,0}(\Omega)) \cap C_\omega (\bar Q)\), \(\partial u /\partial t \in L^2(Q)\) which holds. Observe that due to the degeneracy of the equations being considered, the solutions exist in a weak sense with respect to the time variable.

MSC:

35K65 Degenerate parabolic equations
35B10 Periodic solutions to PDEs
35D05 Existence of generalized solutions of PDE (MSC2000)
35K55 Nonlinear parabolic equations
Full Text: DOI

References:

[1] Bange, D. W., Periodic solutions of a quasilinear parabolic differential equation, J. Differential Equations, 17, 61-72 (1975) · Zbl 0291.35051
[2] Nakao, M., On boundedness, periodicity, and almost periodicity of solutions of some nonlinear parabolic equations, J. Differential Equations, 19, 371-385 (1975) · Zbl 0328.35050
[3] Nakao, M., Global solutions for some nonlinear parabolic equations with nonmontonic perturbations, Nonlinear Anal., 10, 299-314 (1986) · Zbl 0595.35058
[4] Amann, H., Invariant sets and existence theorems for semilinear parabolic and elliptic systems, J. Math. Anal. Appl., 65, 432-467 (1978) · Zbl 0387.35038
[5] P. Hess, On positive solutions of semilinear periodic-parabolic problems, in; P. Hess, On positive solutions of semilinear periodic-parabolic problems, in · Zbl 0611.35045
[6] Esteban, M., On periodic solutions of superlinear parabolic problems, Trans. Amer. Math. Soc., 293, 171-189 (1986) · Zbl 0619.35058
[7] Esteban, M., A remark on the existence of positive periodic solutions of superlinear parabolic problems, Proc. Amer. Math. Soc., 102, 131-136 (1988) · Zbl 0653.35039
[8] Hess, P., Periodic-Parabolic Boundary Value Problems and Positivity (1991), Longman: Longman Harlow · Zbl 0731.35050
[9] Hirano, N.; Mizoguchi, N., Positive unstable periodic solutions for super-linear parabolic equations, Proc. Amer. Math. Soc., 123, 1487-1495 (1995) · Zbl 0828.35063
[10] Fife, P., Solutions of parabolic boundary problems existing for all time, Arch. Mech. Anal., 16, 155-186 (1964) · Zbl 0173.38204
[11] Seidman, T. I., Periodic solutions of a nonlinear parabolic equation, J. Differential Equations, 19, 242-257 (1975) · Zbl 0281.35005
[12] Nakao, M., Periodic solutions of some nonlinear degenerate parabolic equations, J. Math. Anal. Appl., 104, 554-567 (1984) · Zbl 0565.35057
[13] Dancer, E. N.; Hess, P., On stable solutions of quasilinear periodic-parabolic problems, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4), 14, 123-141 (1987) · Zbl 0697.35072
[14] A. Tesei, Times periodic solution of a degenerate parabolic problem; A. Tesei, Times periodic solution of a degenerate parabolic problem · Zbl 0798.35086
[15] Mizoguchi, N., Periodic solutions for degenerate diffusion equations, Indiana Univ. Math. J., 44, 413-432 (1995) · Zbl 0842.35049
[16] Lindqvist, P., On the equation div(|∇\(u^p\)∇\(uu^pu\), Proc. Amer. Math. Soc., 109, 157-164 (1990) · Zbl 0714.35029
[17] Huang, Y. X., Eigenvalues of the \(p R^N\) with indefinite weight, Comment Math. Univ. Cardinae, 36, 519-527 (1995) · Zbl 0839.35097
[18] Nakao, M., \(L^p\)-estimates of solutions of some nonlinear degenerate diffusion equation, J. Math. Soc. Japan, 37, 41-63 (1985) · Zbl 0569.35051
[19] Ohara, Y., \(L^∞\), Nonlinear Anal., 18, 413-426 (1992) · Zbl 0768.35052
[20] Gidas, B.; Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6, 883-901 (1981) · Zbl 0462.35041
[21] Di Benedetto, E., Degenerate Parabolic Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0794.35090
[22] Ladyzhenskaja, O. A.; Solonnikov, V. A.; Ural’tzeva, N. N., Linear and quasilinear equations of parabolic type, Trans. Math. Merro. (1968), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0174.15403
[23] Di Benedetto, E., On the local behavior of solutions of degenerate parabolic equations with measurable coefficients, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4), 13, 487-535 (1986) · Zbl 0635.35052
[24] Zhuoqun, Wu; Junning, Zhao; Jingxue, Yin; Huilai, Li, Nonlinear Diffusion Equations (1996), Jilin Univ. Press: Jilin Univ. Press Changcun · Zbl 0997.35001
[25] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 203-243 (1979) · Zbl 0425.35020
[26] Junning, Zhao, On the Cauchy problem and initial traces for the evolution \(p\), J. Differential Equations, 121, 329-383 (1995) · Zbl 0836.35081
[27] Fujita, H., On the blowing up of solutions of the Cauchy problem for\(u_t\)=Δ \(uu^{1+α} \), J. Fac. Sci. Univ. Tokyo Sect. IA Math., 16, 105-113 (1966)
[28] Levine, H. A., The role of critical exponents in blow up theorems, SIAM Rev., 32, 262-288 (1990) · Zbl 0706.35008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.